Bone metastases are a frequent complication of many cancers that result in severe disease burden and pain [1][2][3] . Since the late nineteenth century, it has been thought that the microenvironment of the local host tissue actively participates in the propensity of certain cancers to metastasize to specific organs, and that bone provides an especially fertile 'soil'4 . In the case of breast cancers, the local chemokine milieu is now emerging as an explanation for why these tumours preferentially metastasize to certain organs 5 . However, as the inhibition of chemokine receptors in vivo only partially blocks metastatic behaviour 6 , other factors must exist that regulate the preferential metastasis of breast cancer cells. Here we show that the cytokine RANKL (receptor activator of NF-kB ligand) 7,8 triggers migration of human epithelial cancer cells and melanoma cells that express the receptor RANK. RANK is expressed on cancer cell lines and breast cancer cells in patients. In a mouse model of melanoma metastasis 9 , in vivo neutralization of RANKL by osteoprotegerin results in complete protection from paralysis and a marked reduction in tumour burden in bones but not in other organs. Our data show that local differentiation factors such as RANKL have an important role in cell migration and the tissue-specific metastatic behaviour of cancer cells.
Tumor-necrosis factor (TNF), a pleiotropic cytokine, triggers physiological and pathological responses in several organs. Here we show that deletion of the mouse gene Timp3 resulted in an increase in TNF-alpha converting enzyme activity, constitutive release of TNF and activation of TNF signaling in the liver. The increase in TNF in Timp3(-/-) mice culminated in hepatic lymphocyte infiltration and necrosis, features that are also seen in chronic active hepatitis in humans. This pathology was prevented when deletion of Timp3 was combined with Tnfrsf1a deficiency. In a liver regeneration model that requires TNF signaling, Timp3(-/-) mice succumbed to liver failure. Hepatocytes from Timp3(-/-) mice completed the cell cycle but then underwent cell death owing to sustained activation of TNF. This hepatocyte cell death was completely rescued by a neutralizing antibody to TNF. Dysregulation of TNF occurred specifically in Timp3(-/-), and not Timp1(-/-) mice. These data indicate that TIMP3 is a crucial innate negative regulator of TNF in both tissue homeostasis and tissue response to injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.