Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction. To overcome this limitation, we developed split-spectrum amplitude-decorrelation angiography (SSADA) to improve the signal-to-noise ratio (SNR) of flow detection. The full OCT spectrum was split into several narrower bands. Inter-B-scan decorrelation was computed using the spectral bands separately and then averaged. The SSADA algorithm was tested on in vivo images of the human macula and optic nerve head. It significantly improved both SNR for flow detection and connectivity of microvascular network when compared to other amplitude-decorrelation algorithms.
Purpose-To map ganglion cell complex thickness with high-speed Fourier-domain optical coherence tomography (FD-OCT) and compute novel macular parameters for glaucoma diagnosis.Design-Observational, cross-sectional study.Participants-One hundred seventy-eight participants in the Advanced Imaging for Glaucoma Study, divided into three groups: 65 persons in the normal group (N), 78 in the perimetric glaucoma group (PG), and 52 in the pre-perimetric glaucoma group (PPG). Methods-TheRTVue FD-OCT system was used to map the macula over a 7×6 mm region. The macular OCT images were exported for automatic segmentation using software we developed. The program measured macular retinal (MR) thickness and ganglion cell complex (GCC) thickness. The GCC was defined as the combination of nerve fiber, ganglion cell, and inner plexiform layers. Pattern analysis was applied to the GCC map and the diagnostic power of pattern-based diagnostic parameters were investigated. Results were compared to time-domain (TD) Stratus OCT measurements of MR and circumpapillary nerve fiber layer (NFL) thickness.Main Outcome Measures-Repeatability was assessed by intraclass correlation (ICC), pooled standard deviation, and coefficient of variation. Diagnostic power was assessed by the area under the receiver operator characteristic (AROC) curve. Measurements in the PG group were the primary measures of performance.Results-The FD-OCT measurements of MR and GCC averages had significantly better repeatability than TD-OCT measurements of MR and NFL averages. The FD-OCT GCC average had significantly (P=0.02) higher diagnostic power (AROC = 0.90) than MR (AROC = 0.85 for both FD-OCT & TD-OCT) in differentiating between PG and N. One GCC pattern parameter, global loss volume, had significantly higher AROC (0.92) than the overall average (P=0.01). The diagnostic powers of the best GCC parameters were statistically equal to TD-OCT NFL average. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.This article contains online-only material. The following should appear online-only: table 3, figures 3 and figure 6. NIH Public Access Author ManuscriptOphthalmology. Author manuscript; available in PMC 2010 December 1. Published in final edited form as:Ophthalmology. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptConclusions-The higher speed and resolution of FD-OCT improved the repeatability of macular imaging compared to standard TD-OCT. Ganglion cell mapping and pattern analysis improved diagnostic power. The improved diagnostic power of macular GCC imaging is on par with, and complementary to...
Purpose To detect and quantify choroidal neovascularization (CNV) in age-related macular degeneration (AMD) patients using optical coherence tomography (OCT) angiography. Design Observational, cross-sectional study. Participants Five normal subjects and five neovascular AMD patients were included. Methods Five eyes with neovascular AMD and five normal age-matched controls were scanned by a high-speed (100,000 A-scans/sec) 1050 nm wavelength swept-source OCT. The macular angiography scan covered a 3×3 mm area and comprised 200×200×8 A-scans acquired in 3.5 sec. Flow was detected using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm. Motion artifacts were removed by three dimensional (3D) orthogonal registration and merging of 4 scans. The 3D angiography was segmented into 3 layers: inner retina (to show retinal vasculature), outer retina (to identify CNV), and choroid. En face maximum projection was used to obtain 2D angiograms from the 3 layers. CNV area and flow index were computed from the en face OCT angiogram of the outer retinal layer. Flow (decorrelation) and structural data were combined in composite color angiograms for both en face and cross-sectional views. Main Outcome Measurements CNV angiogram, CNV area, and CNV flow index. Results En face OCT angiograms of CNVs showed sizes and locations that were confirmed by fluorescein angiography. OCT angiography provided more distinct vascular network patterns that were less obscured by subretinal hemorrhage. The en face angiograms also showed areas of reduced choroidal flow adjacent to the CNV in all cases and significantly reduced retinal flow in one case. Cross-sectional angiograms were used to visualize CNV location relative to the retinal pigment epithelium and Bruch’s layer and classify type I and type II CNV. A feeder vessel could be identified in one case. Higher flow indexes were associated with larger CNV and type II CNV. Conclusions OCT angiography provides depth-resolved information and detailed images of CNV in neovascular AMD. Quantitative information regarding CNV flow and area can be obtained. Further studies are needed to assess the role of quantitative OCT angiography in the evaluation and treatment of neovascular AMD.
Optic nerve head (ONH) blood flow may be associated with glaucoma development. A reliable method to quantify ONH blood flow could provide insight into the vascular component of glaucoma pathophysiology. Using ultrahigh-speed optical coherence tomography (OCT), we developed a new 3D angiography algorithm called split-spectrum amplitude-decorrelation angiography (SSADA) for imaging ONH microcirculation. In this study, a method to quantify SSADA results was developed and used to detect ONH perfusion changes in early glaucoma. En face maximum projection was used to obtain 2D disc angiograms, from which the average decorrelation values (flow index) and the percentage area occupied by vessels (vessel density) were computed from the optic disc and a selected region within it. Preperimetric glaucoma patients had significant reductions of ONH perfusion compared to normals. This pilot study indicates OCT angiography can detect the abnormalities of ONH perfusion and has the potential to reveal the ONH blood flow mechanism related to glaucoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.