BackgroundSwarm intelligence provides the design and implementation of systems composed of many simple individuals who interact locally and produce remarkable behavior as a whole (Dudek et al. 1996). It provides multiple benefits such as robustness where the performance of the system is not affected significantly with the failure of individuals, simplicity of computational and perceptual capabilities of individuals but still allowing global complex behaviors and scalability of the control mechanism that does not depend on the number of agents (Mitton and Simplot-Ryl 2014). The application of swarm intelligence to collective robotics is identified as Swarm Robotics in El Zoghby et al. (2014). Many artificial systems such as distributed computing systems and artificial intelligence systems are characterized by complex behaviors that emerge as a result of the nonlinear spatio-temporal interactions among a large number of system components at different levels of organization. These systems are known as Complex Adaptive Systems (CAS) as stated by Lansing (2003). Holland (2006) also considers CAS as dynamic systems able to adapt in and evolve with a changing environment. MAF problem is a benchmark problem for swarm robotics. It can be seen as a CAS and defined like in Niazi and Hussain Abstract Background: The foraging task is one of the canonical testbeds for cooperative robotics, in which a collection of robots has to search and transport objects to specific storage point(s). In this paper, we investigate the Multi-Agent Foraging (MAF) problem from several perspectives that we analyze in depth.Results: First, we define the Foraging Problem according to literature definitions. Then we analyze previously proposed taxonomies, and propose a new foraging taxonomy characterized by four principal axes: Environment, Collective, Strategy and Simulation, summarize related foraging works and classify them through our new foraging taxonomy. Then, we discuss the real implementation of MAF and present a comparison between some related foraging works considering important features that show extensibility, reliability and scalability of MAF systems Conclusions:Finally we present and discuss recent trends in this field, emphasizing the various challenges that could enhance the existing MAF solutions and make them realistic. Zedadra et al. Complex Adapt Syst Model (2017) et al. Complex Adapt Syst Model (2017) 5:3 (2012) as a system made up of multiple simple individuals which interact in a nonlinear fashion, thereby giving rise to global and often unpredictable behaviors. A good way to understand a CAS is to study them in special cases, thus to simulate dedicated behavior from particular perspectives. Holland (2006) states that the analysis of CAS is done through a combination of applied, theoretical and experimental methods (e.g. mathematics and computer simulations). Authors in Fortino and North (2013) state that Agent-Based Modeling (ABM) has proven to provide an effective set of tools for modeling and simulating different ...
Abstract-We explore the on-line problem of coverage where multiple agents have to find a target whose position is unknown, and without a prior global information about the environment. In this paper a novel algorithm for multi-target search is described, it is inspired from water vortex dynamics and based on the principle of pheromone-based communication. According to this algorithm, called S-MASA (Stigmergic Multi Ant Search Area), the agents search nearby their base incrementally using turns around their center and around each other, until the target is found, with only a group of simple distributed cooperative Ant like agents, which communicate indirectly via depositing/detecting markers. This work improves the search performance in comparison with random walk and S-random walk (stigmergic random walk) strategies, we show the obtained results using computer simulations.
Given its advantages in low latency, fast response, context-aware services, mobility, and privacy preservation, edge computing has emerged as the key support for intelligent applications and 5G/6G Internet of things (IoT) networks. This technology extends the cloud by providing intermediate services at the edge of the network and improving the quality of service for latency-sensitive applications. Many AI-based solutions with machine learning, deep learning, and swarm intelligence have exhibited the high potential to perform intelligent cognitive sensing, intelligent network management, big data analytics, and security enhancement for edge-based smart applications. Despite its many benefits, there are still concerns about the required capabilities of intelligent edge computing to deal with the computational complexity of machine learning techniques for big IoT data analytics. Resource constraints of edge computing, distributed computing, efficient orchestration, and synchronization of resources are all factors that require attention for quality of service improvement and cost-effective development of edge-based smart applications. In this context, this paper aims to explore the confluence of AI and edge in many application domains in order to leverage the potential of the existing research around these factors and identify new perspectives. The confluence of edge computing and AI improves the quality of user experience in emergency situations, such as in the Internet of vehicles, where critical inaccuracies or delays can lead to damage and accidents. These are the same factors that most studies have used to evaluate the success of an edge-based application. In this review, we first provide an in-depth analysis of the state of the art of AI in edge-based applications with a focus on eight application areas: smart agriculture, smart environment, smart grid, smart healthcare, smart industry, smart education, smart transportation, and security and privacy. Then, we present a qualitative comparison that emphasizes the main objective of the confluence, the roles and the use of artificial intelligence at the network edge, and the key enabling technologies for edge analytics. Then, open challenges, future research directions, and perspectives are identified and discussed. Finally, some conclusions are drawn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.