Crigler-Najjar (CN) Kinetic constants for the glucuronidation of bilirubin were determined. The affinities for bilirubin of B-UGT1 expressed in COS cells and B-UGT from human liver microsomes were similar with Km of 5.1±0.9 ,uM and 7.9±5.3 ,uM, respectively. B-UGT1 from patient B had a tenfold decreased affinity for bilirubin, Km = 56±23 ,LM.At physiological concentrations of bilirubin both type II patients will have a strongly reduced conjugation capacity, whereas type I patients have no B-UGT activity. We conclude that CN type I is caused by a complete absence of functional B-UGT and that in CN type II B-UGT activity is reduced. (J. Clin. Invest. 1994Invest. .94:2385Invest. -2391
In the anaerobic treatment of sulfate‐containing wastewater, sulfate reduction interferes with methanogenesis. Both mutualistic and competitive interactions between sulfate‐reducing bacteria and methanogenic bacteria have been observed. Sulfate reducers will compete with methanogens for the common substrates hydrogen, formate and acetate. In general, sulfate reducers have better growth kinetic properties than methanogens, but additional factors which may be of importance in the competition are adherence properties, mixed substrate utilization, affinity for sulfate of sulfate reducers, relative numbers of bacteria, and reactor conditions such as pH, temperature and sulfide concentration. Sulfate reducers also compete with syntrophic methanogenic consortia involved in the degradation of substrates like propionate and butyrate. In the absence of sulfate these methanogenic consortia are very important, but in the presence of sulfate they are thought to be easily outcompeted by sulfate reducers. However, at relatively low sulfate concentrations, syntrophic degradation of propionate and butyrate coupled to HZ removal via sulfate reduction rather than via methanogenesis may become important. A remarkable feature of some sulfate reducers is their ability to grow fermentatively or to grow in syntrophic association with methanogens in the absence of sulfate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.