This chapter introduces the principles and difficulties of time-of-flight depth measurement. The depth-images that are produced by time-of-flight cameras suffer from characteristic problems, which are divided into the following two classes. Firstly there are systematic errors, such as noise and ambiguity, which are directly related to the sensor. Secondly, there are non-systematic errors, such as scattering and motion blur, which are more strongly related to the scene-content. It is shown that these errors are often quite different from those observed in ordinary color images. The case of motion blur, which is particularly problematic, is examined in detail. A practical methodology for investigating the performance of depth-cameras is presented. Time-of-flight devices are compared to structured-light systems, and the problems posed by specular and translucent materials are investigated.
We present two algorithms for aligning two colored point clouds. The two algorithms are designed to minimize a probabilistic cost based on the color-supported soft matching of points in a point cloud to their K-closest points in the other point cloud. The first algorithm, like prior iterative closest point algorithms, refines the pose parameters to minimize the cost. Assuming that the point clouds are obtained from RGB-depth images, our second algorithm regards the measured depth values as variables and minimizes the cost to obtain refined depth values. Experiments with our synthetic dataset show that our pose refinement algorithm gives better results compared to the existing algorithms. Our depth refinement algorithm is shown to achieve more accurate alignments from the outputs of the pose refinement step. Our algorithms are applied to a real-world dataset, providing accurate and visually improved results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.