Objective: Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder whose cause remains unknown. Oxidative stress is one of the possible causes of many disorders, including neurological ones. This study aims to measure some oxidative stress biomarkers (Malondialdehyde “MDA,” Advanced Oxidation Protein Product “AOPP,” Glutathione “GSH”) within Syrian children with ASD. Methods: MDA, AOPP & GSH were measured in the plasma of a total of 60 children. The ages of the children ranged from 1 to 13 years old. Thirty children had ASD and were compared with 30 controls that don’t have ASD. Fifteen of the controls were siblings of an ASD child, while the remaining 15 had no relations with ASD. Results: MDA and AOPP plasma levels were higher in ASD children compared with non-related controls ( P = .0001). However, there were no significant differences between MDA and AOPP plasma levels in ASD children in comparison with related controls ( P > .05). Alternatively, GSH plasma levels were lower in ASD children compared with both related and non-related controls ( P = .0001). Conclusion: Further studies are needed to investigate more regarding the diagnostic use of oxidative stress biomarkers, and the therapeutic use of antioxidants in children affected with the autism spectrum disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.