We disclose a simple and eco-friendly method to prepare carbon nanosheets (CNSs) by freeze-casting of lignin aqueous dispersion followed by direct carbonization. These lignin-derived CNSs show high performances as electrodes in supercapacitors.
A method is presented to fabricate metakaolin‐based geopolymers that are structurally and mechanically stable up to 600°C. The chemical environment of the geopolymers is characterized using thermogravimetric analysis and Fourier‐transform infrared spectroscopy. Residual free water turned into steam and caused damage to the geopolymer when exposed to elevated temperatures. The curing temperature was increased from 80 to 120°C to remove water during the curing process. A correlation was drawn between the amount of Si‐O‐Al linkage formed and the position of fingerprint peaks in infrared spectra, providing a tool to evaluate the level of geopolymerization. Flexural and tensile properties of geopolymers fabricated using the optimized method were measured for no heat treatment and for exposure to elevated temperatures of 200, 400, and 600°C. The flexural strength was measured to be 10.80 ± 2.99 MPa at room temperature, 10.36 ± 0.64 MPa at 400°C, and 8.04 ± 1.60 MPa at 600°C. The flexural modulus is reported to be 13.09 ± 3.40 GPa at room temperature and 11.03 ± 0.53 GPa at 600°C. The flexural toughness decreased with increasing temperature. The tensile properties of the geopolymer were measured with direct tensile tests paired with an extensometer. The tensile strength decreased from 4.16 ± 2.08 MPa at room temperature to 3.13 ± 0.97 MPa at 400°C, and 2.75 ± 0.86 MPa at 600°C. The Young's modulus decreased from 45.38 ± 30.30 GPa at room temperature to 26.88 ± 6.65 GPa at 600°C. Both flexural and tensile tests have shown that the metakaolin‐based geopolymers cured at 120°C is mechanically stable at temperatures up to 600°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.