In this paper, we prove that the weak error between a stochastic differential equation with nonlinearity in the sense of McKean given by moments and its approximation by the Euler discretization with time-step h of a system of N interacting particles is O(N −1 + h). We provide numerical experiments confirming this behaviour and showing that it extends to more general mean-field interaction and study the efficiency of the antithetic sampling technique on the same examples.
We are interested in the Euler-Maruyama discretization of a stochastic differential equation in dimension d with constant diffusion coefficient and bounded measurable drift coefficient. In the scheme, a randomization of the time variable is used to get rid of any regularity assumption of the drift in this variable. We prove weak convergence with order 1/2 in total variation distance. When the drift has a spatial divergence in the sense of distributions with ρ-th power integrable with respect to the Lebesgue measure in space uniformly in time for some ρ ≥ d, the order of convergence at the terminal time improves to 1 up to some logarithmic factor. In dimension d = 1, this result is preserved when the spatial derivative of the drift is a measure in space with total mass bounded uniformly in time. We confirm our theoretical analysis by numerical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.