Filtration is a simple ecological process for the treatment of effluents. This research examined the physicochemical properties of micronutrients, macronutrients, and heavy metals (HM) removed after the slow filtration of pig slurry (PS) through multiple media: sands, silt loam soils, fly ash, and zeolite. The objective was to find a new layer that can be added to our constructed wetland (CW) to improve its efficiency and study how the slurry reacts to these natural materials. The filtration achieved an approximate removal rate of 99.99% for total suspended solids (TSS) and nitrogen and 61, 94, 72, and 97%, respectively, for electrical conductivity (EC), turbidity, chemical oxygen demand (COD), and five-day biological oxygen demand (BOD5). The two sands, soil 1, and zeolite, had a macronutrient reduction median of 60%, whereas soil 2, 3, 4, and fly ash released macronutrients such as Na, Ca, and Mg. All the media achieved nearly 99.99% micronutrient removal for Fe and Zn. The Cu removal rate was over 86% except for sand 1 and 2 and soil 1, which reduced it to only 46%; the overall Mn removal rate was more than 80% except for soil 3 and soil 4, where it was only 9%. Zeolite had a 99.99% removal capacity for HM as opposed to sand 2, soil 4, and fly ash, which released some HMs (Ni, Cu). This inexpensive and abundant media filtration process is sound technically and financially sound and seems to be an ideal cost-efficient treatment for pig slurry.
Pig slurry is considered a high-risk effluent that causes several environmental problems if it is not adequately managed and treated. White Iberian pig farms in the southeast of Spain treat their slurry in situ using separation, double filtration, decantation, and constructed wetland treatments. However, the pretreatment process does not successfully reduce solids, which leads to clogging in the constructed wetlands (CWs). The main objective of this research paper is to reduce the turbidity and chemical oxygen demand (COD) from the effluent to make it appropriate for CW treatment. Optimization of the coagulation–flocculation (CF) process using iron chloride and a cationic flocculent DKFLOCC-1598 was investigated by a central composite design method (CCD). The effects of coagulant concentration, pH, and flocculent on the COD and turbidity removal were evaluated. The best results were found using 0.024 mol L−1 iron chloride and 0.164 mL L−1 flocculent at pH 7.5, which reduced COD by 96% and delivered turbidity removal of 97%. Therefore, the results indicate the high efficiency of the treatment method in reducing the COD and suspended solids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.