a b s t r a c tThe failure behaviour of quasi-brittle materials is often time-dependent. This dependence is due to physical processes taking place at the level of the micro-structure. For a rigorous modeling of the time-dependent behaviour of that kind of solids, a two-scale approach is well suited. This paper investigates time-dependent damage which microscopic origin is the subcritical micro-crack growth. We present a two-scale time-dependent damage model completely deduced from small-scale descriptions of subcritical micro-crack propagation, without any macroscopic assumptions. The passage from the micro-scale to the macro-scale is done through an asymptotic homogenization approach. At the micro-scale, the tensile failure due to the subcritical propagation of cracks is the dominant mechanism of creep observed at the macro-scale. We consider microstructures with cracks evolving in different subcritical regimes. We assume a complex propagation law that considers three characteristic regimes of subcritical crack growth, corresponding to different physical processes at the crack tip level. Numerical simulations of constant strain rate, relaxation and creep tests illustrate the ability of the developed model to reproduce different regimes of time-dependent damage response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.