This work presents the influences of glass fiber content on the mechanical and physical characteristics of polybutylene terephthalate (PBT) reinforced with glass fibers (GF). For the mechanical characterization of the composites depending on the GF reinforcement rate, tensile tests are carried out. The results show that increasing the GF content in the polymer matrix leads to an increase in the stiffness of the composite but also to an increase in its brittleness. Scanning Electron Microscope analysis is performed, highlighting the multi-scale dependency on types of damage and macroscopic behavior of the composites. Furthermore, flammability tests were performed. They permit certifying the flame retardancy capacity of the electrical composite part. Additionally, fluidity tests are carried out to identify the flow behavior of the melted composite during the polymer injection process. Finally, the cracking resistance is assessed by riveting tests performed on the considered electrical parts produced from composites with different GF reinforcement. The riveting test stems directly from the manufacturing process. Therefore, its results accurately reflect the fragility of the material used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.