We study the thermodynamics of the relativistic quantum O(N) model in two space dimensions. In the vicinity of the zero-temperature quantum critical point (QCP), the pressure can be written in the scaling form P(T)=P(0)+N(T(3)/c(2))F(N)(Δ/T), where c is the velocity of the excitations at the QCP and |Δ| a characteristic zero-temperature energy scale. Using both a large-N approach to leading order and the nonperturbative renormalization group, we compute the universal scaling function F(N). For small values of N (N~10) we find that F(N)(x) is nonmonotonic in the quantum critical regime (|x|~1) with a maximum near x=0. The large-N approach-if properly interpreted-is a good approximation both in the renormalized classical (x~-1) and quantum disordered (x>/~1) regimes, but fails to describe the nonmonotonic behavior of F(N) in the quantum critical regime. We discuss the renormalization-group flows in the various regimes near the QCP and make the connection with the quantum nonlinear sigma model in the renormalized classical regime. We compute the Berezinskii-Kosterlitz-Thouless transition temperature in the quantum O(2) model and find that in the vicinity of the QCP the universal ratio T(BKT)/ρ(s)(0) is very close to π/2, implying that the stiffness ρ(s)(T(BKT)(-)) at the transition is only slightly reduced with respect to the zero-temperature stiffness ρ(s)(0). Finally, we briefly discuss the experimental determination of the universal function F(2) from the pressure of a Bose gas in an optical lattice near the superfluid-Mott-insulator transition.
A new guideline for mitigating indoor airborne transmission of COVID-19 prescribes a limit on the time spent in a shared space with an infected individual (Bazant & Bush, Proceedings of the National Academy of Sciences of the United States of America, vol. 118, issue 17, 2021, e2018995118). Here, we rephrase this safety guideline in terms of occupancy time and mean exhaled carbon dioxide ( ${\rm CO}_{2}$ ) concentration in an indoor space, thereby enabling the use of ${\rm CO}_{2}$ monitors in the risk assessment of airborne transmission of respiratory diseases. While ${\rm CO}_{2}$ concentration is related to airborne pathogen concentration (Rudnick & Milton, Indoor Air, vol. 13, issue 3, 2003, pp. 237–245), the guideline developed here accounts for the different physical processes affecting their evolution, such as enhanced pathogen production from vocal activity and pathogen removal via face-mask use, filtration, sedimentation and deactivation. Critically, transmission risk depends on the total infectious dose, so necessarily depends on both the pathogen concentration and exposure time. The transmission risk is also modulated by the fractions of susceptible, infected and immune people within a population, which evolve as the pandemic runs its course. A mathematical model is developed that enables a prediction of airborne transmission risk from real-time ${\rm CO}_{2}$ measurements. Illustrative examples of implementing our guideline are presented using data from ${\rm CO}_{2}$ monitoring in university classrooms and office spaces.
Dynamic buckling may occur when a load is rapidly applied to, or removed from, an elastic object at rest. In contrast to its static counterpart, dynamic buckling offers a wide range of accessible patterns depending on the parameters of the system and the dynamics of the load. To study these effects, we consider experimentally the dynamics of an elastic ring in a soap film when part of the film is suddenly removed. The resulting change in tension applied to the ring creates a range of interesting patterns that cannot be easily accessed in static experiments. Depending on the aspect ratio of the ring's cross section, high-mode buckling patterns are found in the plane of the remaining soap film or out of the plane. Paradoxically, while inertia is required to observe these nontrivial modes, the selected pattern does not depend on inertia itself. The evolution of this pattern beyond the initial instability is studied experimentally and explained through theoretical arguments linking dynamics to pattern selection and mode growth. We also explore the influence of dynamic loading and show numerically that, by imposing a rate of loading that competes with the growth rate of instability, the observed pattern can be selected and controlled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.