Background
COVID-19 is a worldwide pandemic representing the most challenging global health crisis currently. Screening tests availability are a problematic task due to resource-limited abilities of some countries using RT-qPCR technique for SARS-COV-2 detection.
Objective
To cope with these health emergencies, in particular with this COVID-19 pandemic, states with low molecular diagnostic resources must optimize their capacity in molecular tests. We aimed to design a simple and effective strategy to improve inputs in the RT-qPCR tests as we attempted to check the financial advisability of using such an approach by calculating reduction rate of the test unit cost.
Methods
The used RNA was taken from suspected Covid-19 positive people. Nasopharyngeal swabs were collected at Pasteur Institute Diagnostic Center, Constantine, Algeria, 2020. We have optimized a screening strategy by grouping 16 individuals per pool, without reducing the sensitivity of RT-qPCR.
Results
A 1/16 dilution of a positive sample was a practical limit that does not require the use of robotic systems or mathematical modeling to construct the pools. The financial analysis of our strategy has shown that the costs can be reduced to 90%. The pooled testing strategy that was proven in this study could be recommended to help COVID-19 containment in countries with low potential screening infrastructures using RT-qPCR technique by reducing the number of tests required to identify all positive subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.