The topic of microgrids (MGs) is a fast-growing and very promising field of research in terms of energy production quality, pollution reduction and sustainable development. Moreover, MGs are, above all, designed to considerably improve the autonomy, sustainability, and reliability of future electrical distribution grid. At the same time, aspects of MGs energy management, taking into consideration distribution generation systems, energy storage devices, electric vehicles, and consumption components have been widely investigated. Besides, grid architectures including DC, AC, or hybrid power generation systems, energy dispatching problems modelling, operating modes (islanded or grid connected), MGs sizing, simulations and problems solving optimization approaches, and other aspects, have been raised as topics of great interest for both electrical and computer sciences research communities. Furthermore, the United Nations Framework Convention on Climate Change and government policies and incentives have paved the way to massive electric vehicle (EV) deployment. Hence, several research studies have been conducted to investigate the integration of EVs in national power grid and future MGs. Specifically, EV charging stations’ bi-directional power flow control and energy management have been considerably explored. These issues index challenging research topics, which are in most cases still under progress. This paper gives an overview of MGs technology advancement in recent decades, taking into consideration distributed energy generation (DER), energy storage systems (ESS), EVs, and loads. It reviews the main MGs architecture, operating modes, sizing and energy management systems (EMS) and EVs integration.
The vehicle-to-grid concept emerged very quickly after the integration of renewable energy resources because of their intermittency and to support the grid during on-peak periods, consequently preventing congestion and any subsequent grid instability. Renewable energies offer a large source of clean energy, but they are not controllable, as they depend on weather conditions. This problem is solved by adding energy storage elements, implementing a demand response through shiftable loads, and the vehicle-to-grid/vehicle-to-home technologies. Indeed, an electric vehicle is equipped with a high-capacity battery, which can be used to store a certain amount of energy and give it back again later when required to fulfill the electricity demand and prevent an energy shortage when the main-grid power is limited for security reasons. In this context, this paper presents a comparative study between two home microgrids, in one of which the concept of vehicle-to-home is integrated to provide a case study to demonstrate the interest of this technology at the home level. The considered microgrid is composed of renewable energy resources, battery energy storage, and is connected to the main grid. As the vehicle is not available all day, in order to have consistent results, its intervention is considered in the evening, night, and early morning hours. Two case studies are carried out. In the first one, the vehicle-to-home concept is not taken into account. In this case, the system depends only on renewable resources and the energy storage system. Subsequently, the electric vehicle is considered as an additional energy storage device over a few hours. Electric vehicle integration brings an economic contribution by reducing the cost, supporting the other MG components, and relieving the main grid. Simulation results using real weather data for two cities in France, namely Brest and Toulon, show the effectiveness of the vehicle-to-home concept in terms of cost, energy self-sufficiency, and continuity of electrical service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.