Human Argonaute (Ago) proteins are essential components of the RNA-induced silencing complexes (RISCs). Argonaute 2 (Ago2) has a P-element-induced wimpy testis (PIWI) domain, which folds like RNase H and is responsible for target RNA cleavage in RNA interference 1 . Proteins such as Dicer, TRBP, MOV10, RHA, RCK/p54 and KIAA1093 associate with Ago proteins and participate in small RNA processing, RISC loading and localization of Ago proteins in the cytoplasmic messenger RNA processing bodies 1,2 . However, mechanisms that regulate RNA interference remain obscure. Here we report physical interactions between Ago2 and the α-(P4H-α(I)) and β-(P4H-β) subunits of the type I collagen prolyl-4-hydroxylase (C-P4H(I)). Mass spectrometric analysis identified hydroxylation of the endogenous Ago2 at proline 700. In vitro, both Ago2 and Ago4 seem to be more efficiently hydroxylated than Ago1 and Ago3 by recombinant human C-P4H(I). Importantly, human cells depleted of P4H-α(I) or P4H-β by short hairpin RNA and P4H-α(I) null mouse embryonic fibroblast cells showed reduced stability of Ago2 and impaired short interfering RNA programmed RISC activity. Furthermore, mutation of proline 700 to alanine also resulted in destabilization of Ago2, thus linking Ago2 P700 and hydroxylation at this residue to its stability regulation. These findings identify hydroxylation as a post-translational modification important for Ago2 stability and effective RNA interference.To identify the protein network involved in regulating the RNA interference (RNAi) machinery, we established stable HeLa S3 cell lines expressing Flag-HA(haemagglutinin)-tagged human Ago1−4, respectively. Cytoplasmic extracts were immunoprecipitated with sequential anti-Flag and anti-HA antibody resins. Silver staining of a representative purification (Ago2) is shown in Fig. 1a. Mass spectrometric analysis of the purifications
Collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of the 4-hydroxyproline residues that are essential for the generation of triple helical collagen molecules. The vertebrate C-P4Hs I, II, and III are [␣(I)] 2  2 , [␣(II)] 2  2 , and [␣(III)] 2  2 tetramers with identical  subunits. We generated mice with targeted inactivation of the P4ha1 gene encoding the catalytic ␣ subunit of C-P4H I to analyze its specific functions. The null mice died after E10.5, showing an overall developmental delay and a dilated endoplasmic reticulum in their cells. The capillary walls were frequently ruptured, but the capillary density remained unchanged. The C-P4H activity level in the null embryos and fibroblasts cultured from them was 20% of that in the wild type, being evidently due to the other two isoenzymes. Collagen IV immunofluorescence was almost absent in the basement membranes of the null embryos, and electron microscopy revealed disrupted basement membranes, while immunoelectron microscopy showed a lack of collagen IV in them. The amount of soluble collagen IV was increased in the null embryos and cultured null fibroblasts, indicating a lack of assembly of collagen IV molecules into insoluble structures, probably due to their underhydroxylation and hence abnormal conformation. In contrast, the null embryos had collagen I and III fibrils with a typical cross-striation pattern but slightly increased diameters, and the null fibroblasts secreted fibril-forming collagens, although less efficiently than wild-type cells. The primary cause of death of the null embryos was thus most likely an abnormal assembly of collagen IV.
The C-propeptides of the pro alpha chains of type I and type III procollagens are believed to be essential for correct chain recognition and chain assembly in these molecules. We studied here whether the 30-kDa C-propeptides of the human pC alpha 1(I), pC alpha 2(I), and pC alpha 1(III) chains, i.e. pro alpha chains lacking their N-propeptides, can be replaced by foldon, a 29-amino acid sequence normally located at the C terminus of the polypeptide chains in the bacteriophage T4 fibritin. The alpha foldon chains were expressed in Pichia pastoris cells that also expressed the two types of subunit of human prolyl 4-hydroxylase; the foldon domain was subsequently removed by pepsin treatment, which also digests non-triple helical collagen chains, whereas triple helical collagen molecules are resistant to it. The foldon domain was found to be very effective in chain assembly, as expression of the alpha 1(I)foldon or alpha 1(III)foldon chains gave about 2.5-3-fold the amount of pepsin-resistant type I or type III collagen homotrimers relative to those obtained using the authentic C-propeptides. In contrast, expression of chains with no oligomerization domain led to very low levels of pepsin-resistant molecules. Expression of alpha 2(I)foldon chains gave no pepsin-resistant molecules at all, indicating that in addition to control at the level of the C-propeptide other restrictions at the level of the collagen domain exist that prevent the formation of stable [alpha 2(I)]3 molecules. Co-expression of alpha 1(I)foldon and alpha 2(I)foldon chains led to an efficient assembly of heterotrimeric molecules, their amounts being about 2-fold those obtained with the authentic C-propeptides and the alpha 1(I) to alpha 2(I) ratio being 1.91 +/- 0.31 (S.D.). As the foldon sequence contains no information for chain recognition, our data indicate that chain assembly is influenced not only by the C-terminal oligomerization domain but also by determinants present in the alpha chain domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.