We present the four key areas of research—preprocessing, the volume conductor, the forward problem, and the inverse problem—that affect the performance of EEG and MEG source imaging. In each key area we identify prominent approaches and methodologies that have open issues warranting further investigation within the community, challenges associated with certain techniques, and algorithms necessitating clarification of their implications. More than providing definitive answers we aim to identify important open issues in the quest of source localization.
In this paper, we introduce a new modelling related parameter called region of interest sensitivity ratio (ROISR), which describes how well the sensitivity of an electroencephalography (EEG) measurement is concentrated within the region of interest (ROI), i.e. how specific the measurement is to the sources in ROI. We demonstrate the use of the concept by analysing the sensitivity distributions of bipolar EEG measurement. We studied the effects of interelectrode distance of a bipolar EEG lead on the ROISR with cortical and non-cortical ROIs. The sensitivity distributions of EEG leads were calculated analytically by applying a three-layer spherical head model. We suggest that the developed parameter has correlation to the signal-to-noise ratio (SNR) of a measurement, and thus we studied the correlation between ROISR and SNR with 254-channel visual evoked potential (VEP) measurements of two testees. Theoretical simulations indicate that source orientation and location have major impact on the specificity and therefore they should be taken into account when the optimal bipolar electrode configuration is selected. The results also imply that the new ROISR method bears a strong correlation to the SNR of measurement and can thus be applied in the future studies to efficiently evaluate and optimize EEG measurement setups.
BackgroundThe electroencephalography (EEG) is an attractive and a simple technique to measure the brain activity. It is attractive due its excellent temporal resolution and simple due to its non-invasiveness and sensor design. However, the spatial resolution of EEG is reduced due to the low conducting skull. In this paper, we compute the potential distribution over the closed surface covering the brain (cortex) from the EEG scalp potential. We compare two methods – L-curve and generalised cross validation (GCV) used to obtain the regularisation parameter and also investigate the feasibility in applying such techniques to N170 component of the visually evoked potential (VEP) data.MethodsUsing the image data set of the visible human man (VHM), a finite difference method (FDM) model of the head was constructed. The EEG dataset (256-channel) used was the N170 component of the VEP. A forward transfer matrix relating the cortical potential to the scalp potential was obtained. Using Tikhonov regularisation, the potential distribution over the cortex was obtained.ResultsThe cortical potential distribution for three subjects was solved using both L-curve and GCV method. A total of 18 cortical potential distributions were obtained (3 subjects with three stimuli each – fearful face, neutral face, control objects).ConclusionsThe GCV method is a more robust method compared to L-curve to find the optimal regularisation parameter. Cortical potential imaging is a reliable method to obtain the potential distribution over cortex for VEP data.
translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.