Brain-derived neurotrophic factor (BDNF) is a major neurotrophin in the central nervous system that plays a critical role in the physiological brain functions via its two independent receptors: tropomyosin-related kinase B (TrkB) and p75, especially in the neurodevelopment. Disrupting of BDNF and its downstream signals has been found in many neuropsychological diseases, including attention-deficit hyperactivity disorder (ADHD), a common mental disorder which is prevalent in childhood. Understanding the physiological functions of BDNF during neural development and its potential relationship with ADHD will help us to elucidate the possible mechanisms of ADHD and to develop therapeutic approaches for this disease. In this review, we summarized the important literatures for the physiological functions of BDNF in the neurodevelopment. We also performed an association study on the functional genetic variation of BDNF and ADHD by a case-control study in the Chinese mainland population and revealed the potential correlation between BDNF and ADHD which needs further research to confirm.
As the primary mediator for synaptic transmission, AMPA receptors (AMPARs) are crucial for synaptic plasticity and higher brain functions. A downregulation of AMPAR expression has been indicated as one of the early pathological molecular alterations in Alzheimer's disease (AD), presumably via amyloid-β (Aβ). However, the molecular mechanisms leading to the loss of AMPARs remain less clear. We report that in primary neurons, application of Aβ triggers AMPAR internalization accompanied with a decrease in cell-surface AMPAR expression. Importantly, in both Aβ-treated neurons and human brain tissue from AD patients, we observed a significant decrease in total AMPAR amount and an enhancement in AMPAR ubiquitination. Consistent with facilitated receptor degradation, AMPARs show higher turnover rates in the presence of Aβ. Furthermore, AD brain lysates and Aβ-incubated neurons show increased expression of the AMPAR E3 ligase Nedd4 and decreased expression of AMPAR deubiquitinase USP46. Changes in these enzymes are responsible for the Aβ-dependent AMPAR reduction. These findings indicate that AMPAR ubiquitination acts as the key molecular event leading to the loss of AMPARs and thus suppressed synaptic transmission in AD.
Signaling from the synapse to nucleus is mediated by the integration and propagation of both membrane potential changes (postsynaptic potentials) and intracellular second messenger cascades. The electrical propagation of postsynaptic potentials allows for rapid neural information processing, while propagating second messenger pathways link synaptic activity to the transcription of genes required for neuronal survival and adaptive changes (plasticity) underlying circuit formation and learning. The propagation of activity-induced calcium signals to the cell nucleus is a major synapse-to-nucleus communication pathway. Neuronal PAS domain protein 4 (Npas4) is a recently discovered calcium-dependent transcription factor that regulates the activation of genes involved in the homeostatic regulation of excitatory–inhibitory balance, which is critical for neural circuit formation, function, and ongoing plasticity, as well as for defense against diseases such as epilepsy. Here, we summarize recent findings on the neuroprotective functions of Npas4 and the potential of Npas4 as a therapeutic target for the treatment of acute and chronic diseases of the central nervous system.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder with approximately 29 million aging people suffering from this disease worldwide. This number is projected to become triple by 2050. AD is a complex and multifactorial neurodegenerative condition, characterized by complex pathology including oxidative stress, formation of aggregates of amyloid and tau, enhanced immune responses, metal deposition and disturbances in cholinesterase enzymes. There is no effective pharmacological treatment for combating the disease till date. The ineffectiveness of current pharmacological interventions in AD has led scientists to search for more safe and effective alternative therapeutic agents. Thus, natural products have become an important avenue for drug discovery in AD research. In this connection, polyphenols are natural products that have been shown to be effective in the modulation of the type of neurodegenerative changes seen in AD, suggesting a possible therapeutic role. The present review focuses on the chemistry of polyphenols, clinical studies for evaluating polyphenols as effective alternatives in AD treatment, cellular and molecular aspects of polyphenols in improving cognitive deficits and the current challenges and futuristic approaches to use polyphenols as safe and effective therapeutic agents in AD treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.