Common dispersive-type spectroscopic instruments include prism-type and grating-type, usually using a single dispersive element. The continuous imaging band is always limited by the dispersion angle. When it is necessary to image two wavebands with an ultra-spectral resolution that are far apart, the imaging is difficult due to the large diffraction angle. To broaden the spectral coverage of the imaging spectrometer, in this paper, we propose a dual-gratings imaging spectrometer with two independently rotating gratings. In this proposed system, two very far apart wavelength bands can be imaged in the adjacent areas by adjusting the angle of the dual gratings. This greatly expands the spectral coverage of the imaging spectrometer. Currently, the only application area considered for this instrument is solar applications. In this article, we present the optical system of the dual-gratings imaging spectrometer, illustrate several advantages of the new structure, and discuss new problems caused by the dual-gratings, which are referred to as overlap between two spectra and double image offset. We deduced the calculation process of the dual grating rotation angle, the relationship between the final acquired image and the slit, the relationship between the angle change between the dual gratings and the double image offset, and the relationship between the MTF upper limit reduction and the spatial frequency. This article also summarizes the shortcomings of this structure and studies the applicable fields under these shortcomings. At last, we simulate a dual-gratings imaging spectrometer system, compare this scheme with two traditional schemes, and conclude that this instrument has certain practical significance.
To address the miniaturization of the spectral imaging system required by a mounted platform and to overcome the low luminous flux caused by current spectroscopic technology, we propose a method for the multichannel measurement of spectra using a broadband filter in this work. The broadband filter is placed in front of a lens, and the spectral absorption characteristics of the broadband filter are used to achieve the modulation of the incident spectrum of the detection target and to establish a mathematical model for the detection of the target. The spectral and spatial information of the target can be obtained by acquiring data using a push-broom method and reconstructing the spectrum using the GCV-based Tikhonov regularization algorithm. In this work, we compare the accuracy of the reconstructed spectra using the least-squares method and the Tikhonov algorithm based on the L-curve. The effect of errors in the spectral modulation function on the accuracy of the reconstructed spectra is analyzed. We also analyze the effect of the number of overdetermined equations on the accuracy of the reconstructed spectra and consider the effect of detector noise on the spectral recovery. A comparison between the known data cubes and our simulation results shows that the spectral image quality based on broadband filter reduction is better, which validates the feasibility of the method. The proposed method of combining broadband filter-based spectroscopy with a panchromatic imaging process for measurement modulation rather than spectroscopic modulation provides a new approach to spectral imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.