Chlordecone (CD) is an insecticide that was used in the French West Indies for several years to control the banana root borer pest. Given its nonsignificant degradation, it persists in the environment. CD is a carcinogenic compound with reproductive and developmental toxicity and is a recognized endocrine-disrupting chemical. In this study, we examined the effects of CD on female reproductive system of mice with the focus on epigenetic features in ovary. Our data show that gestational exposure to low dose of CD affects meiotic double-strand breaks repair in female embryos. In adult mice derived from CD-treated pregnant females, we observed delayed puberty, decreased number of primordial and increased number of atretic follicles. Gene expression analysis revealed that Rcbtb2 and Rbpms genes were not expressed in embryonic gonads. Estrogen signaling-and oocyte maturation-associated genes were downregulated in adult ovaries. The morphological changes were associated with altered epigenetic features: increased H2Aub and increased H3K27me3 and decreased H4ac and H3K4me3 in embryonic oocytes. The DNA damage-associated, γH2AX marks were detected in the follicles of treated but not control adult ovaries. We also found reduced H3K4me3 and H4ac in fully grown oocytes of the treated ovaries. The ChIP-seq analysis of H3K4me3 in adult ovaries showed that target genes of ZFP57 and TRIM28, which regulate pluripotency and imprinting, were significantly enriched in altered regions. Our study clearly demonstrates that gestational exposure to a low dose of CD impairs the function of female reproductive system and the changes are associated with altered epigenetic features.
Background Panobinostat (PB), a histone deacetylase (HDAC) inhibitor drug, is clinically used in the treatment of cancers. We investigated the effects of PB on murine ovarian functions in embryos and adult animals. Methods C57BL/6J mice were treated with 5 mg/kg PB on alternate days from embryonic day (E) 6.5 to E15.5. We analysed the effects of PB on the ovaries by using immunofluorescence, gene expression analysis and DNA methylation analysis techniques. Results At E15.5, we observed increases in histone H3K9Ac, H4Ac and H3K4me3 marks, while the level of the silencing H3K9me3 mark decreased. Synaptonemal complex examination at E15.5, E17.5 and E18.5 showed a delay in meiotic progression characterized by the absence of synaptonemal complexes at E15.5 and the persistence of double-strand breaks (DSBs) at E17.5 and E18.5 in PB-exposed oocytes. We found that exposure to PB led to changes in the expression of 1169 transcripts at E15.5. Genes regulated by the male-specific factors SRY-Box Transcription Factor 9 (SOX9) and Doublesex and Mab-3-related Transcription factor 1 (DMRT1) were among the most upregulated genes in the ovaries of PB-exposed mice. In contrast, PB treatment led to decreases in the expression of genes regulated by the WNT4 pathway. Notably, we observed 119 deregulated genes encoding Zn-finger proteins. The observed alterations in epigenetic marks and gene expression correlated with decreases in the numbers of germ cells at E15.5. After birth, PB-exposed ovaries showed increased proliferation of primary and secondary follicles. We also observed decreases in the numbers of primordial, primary and secondary follicles in adult ovaries from mice that were exposed to PB in utero. Finally, epigenetic alterations such as decreased H3K4me3 and increased H4 acetylation levels were also detected in somatic cells surrounding fully grown oocytes. Conclusion Our data suggest that inhibition of histone deacetylase by PB during a critical developmental window affects reprogramming and germ cell specification via alteration of epigenetic marks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.