Summary Rapid, terawatt-scale deployment of photovoltaic (PV) modules is required to decarbonize the energy sector. Despite efficiency and manufacturing improvements, material demand will increase, eventually resulting in waste as deployed modules reach end of life. Circular choices for decommissioned modules could reduce waste and offset virgin materials. We present PV ICE, an open-source python framework using modern reliability data, which tracks module material flows throughout PV life cycles. We provide dynamic baselines capturing PV module and material evolution. PV ICE includes multimodal end of life, circular pathways, and manufacturing losses. We present a validation of the framework and a sensitivity analysis. Results show that manufacturing efficiencies strongly affect material demand, representing >20% of the 9 million tons of waste cumulatively expected by 2050. Reliability and circular pathways represent the best opportunities to reduce waste by 56% while maintaining installed capacity. Shorter-lived modules generate 81% more waste and reduce 2050 capacity by 6%.
Among the many ambitious decarbonization goals globally, the US intends grid decarbonization by 2035, requiring 1 TW of installed photovoltaics (PV), up from ~110 GW in 2021. This unprecedented global scale-up will stress existing PV supply chains with increased material and energy demands. By 2050, 1.75 TW of PV in the US cumulatively demands 97 million metric tonnes of virgin material and creates 8 million metric tonnes of life cycle waste. This analysis leverages the PV in Circular Economy tool (PV ICE) to evaluate two circular economy approaches, lifetime extension and closed-loop recycling, on their ability to reduce virgin material demands and life cycle wastes while meeting capacity goals. Modules with 50-year lifetimes can reduce virgin material demand by 3% through reduced deployment. Modules with 15-year lifetimes require an additional 1.2 TW of replacement modules to maintain capacity, increasing virgin material demand and waste unless >90% of module mass is closed-loop recycled. Currently, no PV technology is more than 90% closed-loop recycled. Glass, the majority of mass in all PV technologies and an energy intensive component with a problematic supply chain, should be targeted for a circular redesign. Our work contributes data-backed insights prioritizing circular PV strategies for a sustainable energy transition.
Solar photovoltaics (PV) are the fastest growing renewable energy technologies for clean, cheap, and sustainable electricity generation. To prepare for rapid scale-up, the PV industry needs to project material requirements to build out all aspects of the supply chain appropriately and plan to handle large volumes of module waste.Impacts of deploying different material circularity strategies to reduce waste and conserve primary resources need to be quantified to inform sustainable material management. Here, we introduce the photovoltaic dynamic material flow analysis (PV DMFA) model based on PV electricity generation. The model quantifies material flows and stocks in the cradle-to-cradle life cycles of utility-scale c-Si PV systems in the United States through 2100. We present case studies for solar flat glass and aluminum frame materials under various scenarios to project the impacts of PV performance, reliability, and processing parameters, material circularity strategies, and module design shifts. In the absence of circularity measures, $100 million MT of flat glass and $12 million MT of aluminum would be needed for PV installations by 2100 to meet projected growth in domestic utility PV demand to nearly 1000 TWh in 2100. With optimistic but feasible improvements in efficiency, reliability, and circularity, material intensity and waste could be reduced by nearly 50%. Efficient module collection, minimally intrusive recycling, and careful scrap handling and cleaning could improve material circularity in the PV value chain. This model serves as a sustainability data support tool that may aid in the circular economy transition for PV systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.