Current antidepressants are clinically effective only after several weeks of administration. Here, we show that serotonin(4) (5-HT(4)) agonists reduce immobility in the forced swimming test, displaying an antidepressant potential. Moreover, a 3 day regimen with such compounds modifies rat brain parameters considered to be key markers of antidepressant action, but that are observed only after 2-3 week treatments with classical molecules: desensitization of 5-HT(1A) autoreceptors, increased tonus on hippocampal postsynaptic 5-HT(1A) receptors, and enhanced phosphorylation of the CREB protein and neurogenesis in the hippocampus. In contrast, a 3 day treatment with the SSRI citalopram remains devoid of any effect on these parameters. Finally, a 3 day regimen with the 5-HT(4) agonist RS 67333 was sufficient to reduce both the hyperlocomotion induced by olfactory bulbectomy and the diminution of sucrose intake consecutive to a chronic mild stress. These findings point out 5-HT(4) receptor agonists as a putative class of antidepressants with a rapid onset of action.
Molecular modeling and structure-activity relationship studies were performed to propose a model for binding of the neurotransmitter serotonin (5-HT) to the human serotonin transporter (hSERT). Homology models were constructed using the crystal structure of a bacterial homologue, the leucine transporter from Aquifex aeolicus, as the template and three slightly different sequence alignments. Induced fit docking of 5-HT into hSERT homology models resulted in two different binding modes. Both show a salt bridge between Asp98 and the charged primary amine of 5-HT, and both have the 5-HT C6 position of the indole ring pointing toward Ala173. The difference between the two orientations of 5-HT is an enantiofacial discrimination of the indole ring, resulting in the 5-hydroxyl group of 5-HT being vicinal to either Ser438/Thr439 or Ala169/Ile172/Ala173. To assess the binding experimentally, binding affinities for 5-HT and 17 analogues toward wild type and 13 single point mutants of hSERT were measured using an approach termed paired mutant-ligand analogue complementation (PaMLAC). The proposed ligand-protein interaction was systematically examined by disrupting it through site-directed mutagenesis and re-establishing another interaction via a ligand analogue matching the mutated residue, thereby minimizing the risk of identifying indirect effects. The interactions between Asp98 and the primary amine of 5-HT and the interaction between the C6-position of 5-HT and hSERT position 173 was confirmed using PaMLAC. The measured binding affinities of various mutants and 5-HT analogues allowed for a distinction between the two proposed binding modes of 5-HT and biochemically support the model for 5-HT binding in hSERT where the 5-hydroxyl group is in close proximity to Thr439.
From clinical studies it is known that recurrent depressive episodes associate with a reduced hippocampal volume. Conversely, preclinical studies have shown that chronic antidepressant treatment increases hippocampal neurogenesis. Consequently, it has been suggested that a deficit in hippocampal neurogenesis is implicated in the pathophysiology of depression. To study a potential correlation between recovery and hippocampal cytogenesis, we established the chronic mild stress (CMS) rat model of depression. When rats are subjected to CMS, several depressive symptoms develop, including the major symptom anhedonia. Rats were exposed to stress for 2 weeks and subsequently to stress in combination with antidepressant treatment for 4 consecutive weeks. The behavioral deficit measured in anhedonic animals is a reduced intake of a sucrose solution. Prior to perfusion animals were injected with bromodeoxyuridine (BrdU), a marker of proliferating cells. Brains were sectioned horizontally and newborn cells positive for BrdU were counted in the dentate gyrus and tracked in a dorsoventral direction.CMS significantly decreased sucrose consumption and cytogenesis in the ventral part of the hippocampal formation. During exposure to the antidepressant escitalopram, given as intraperitoneally dosages of either 5 or 10 mg/kg/ day, animals distributed in a bimodal fashion into a group, which recovered (increase in sucrose consumption), and a subgroup, which refracted treatment (no increase in sucrose consumption). Chronic treatment with escitalopram reversed the CMS-induced decrease in cytogenesis in the dentate gyrus of the ventral hippocampal formation, but in recovered animals only. Our data show a correlation between recovery from anhedonia, as measured by cessation of behavioral deficits in the CMS model, and an increase in cytogenesis in the dentate gyrus of the ventral hippocampal formation.
Ubiquitin coding sequences were isolated from a human genomic library and two cDNA libraries. One human ubiquitin gene consists of 2055 nucleotides and codes for a polyprotein consisting of 685 amino acid residues. The polyprotein contains nine direct repeats of the ubiquitin amino acid sequence and the last ubiquitin sequence is extended with an additional valyl residue at the C‐terminal end. No spacer sequences separate the ubiquitin repeats and the coding regions are not interrupted by intervening sequences. This particular gene is transcribed since cDNAs corresponding to the genomic sequence have been isolated. At least two more types of ubiquitin genes are encoded in the human genome, one coding for an ubiquitin monomer while another presumably codes for three or four direct repeats of the ubiquitin sequence. Human DNA contains many copies of the ubiquitin sequence. Ubiquitin is therefore encoded in the human genome as a multigene family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.