Grazing incident X-ray diffraction and X-ray reflectivity have been performed on Langmuir monolayers of low generation monodendrons containing a crown-ether polar group, azobenzene spacer, and varying number of peripheral alkyl chains of 1, 2, 4, and 8. We observe that the cross-sectional mismatch between the bulky polar head and the alkyl tails has a profound effect on the local ordering of the alkyl tails. It is found that the alkyl chains in a single-tail molecule are significantly tilted away from the surface normal. The tilt is eliminated in molecules with two or more alkyl chains where the cross-sectional mismatch is in favor of the peripheral tails. The molecule with one tail possesses a supercell orthorhombic packing caused by structural nonequivalency on the neighboring tails. The two- and four-tail molecules form a mixed structure best described by a quasi-hexagonal unit cell, and the eight-tail molecule forms a more stable hexagonal unit cell. Peripheral tails for these molecules are in standing-off orientation. We suggest that the steric constraints cause lower correlations and a staggered packing structure of monolayers from the eight-tail molecule. We suggest that branching alkyl tails off the same phenyl ring and the presence of the phenyl rings in the vicinity of the branching are limiting factors on the chain packing at the air−water interface in monodendrons with multiple peripheral tails. We conclude that a significant portion of the molecules is submerged in the water subphase and possesses a “kink” shape.
Four generations of monodendrons with multiple dodecyl alkyl tails (AA-N, N representing number of alkyl tails from 1 to 8), an azobenzene spacer group, and a carboxylic acid polar head have been studied at the air-water and air-solid interface using AFM, GIXD, X-ray reflectivity, and UV-vis spectrometry. The one and two tail molecules formed orthorhombic lateral packing with long-range intramonolayer ordering. Good agreement between molecular models and thickness measurements indicated that the one and two tail molecules orient along the surface normal. The increase in the cross-sectional mismatch caused by the presence of the multiple chains for the higher generations disrupted the long-range ordering and forced the alkyl tails to adopt quasi-hexagonal structure. The higher generations (AA-4 and AA-8) formed a kinked structure with the alkyl tails oriented perpendicular to the surface with the azobenzene group tilted at a large degree toward the surface. The photoisomerization behavior in dilute solutions, at the air-water interface, and for grafted layers demonstrated that lower generation monodendrons maintained the photochromic behavior after chemical grafting to the silicon substrates, although the confinement of the molecules in monolayers significantly increased the reorganization time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.