We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multiresolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis.
Accurate and timely detection of weeds between and within crop rows in the early growth stage is considered one of the main challenges in site-specific weed management (SSWM). In this context, a robust and innovative automatic object-based image analysis (OBIA) algorithm was developed on Unmanned Aerial Vehicle (UAV) images to design early post-emergence prescription maps. This novel algorithm makes the major contribution. The OBIA algorithm combined Digital Surface Models (DSMs), orthomosaics and machine learning techniques (Random Forest, RF). OBIA-based plant heights were accurately estimated and used as a feature in the automatic sample selection by the RF classifier; this was the second research contribution. RF randomly selected a class balanced training set, obtained the optimum features values and classified the image, requiring no manual training, making this procedure time-efficient and more accurate, since it removes errors due to a subjective manual task. The ability to discriminate weeds was significantly affected by the imagery spatial resolution and weed density, making the use of higher spatial resolution images more suitable. Finally, prescription maps for in-season post-emergence SSWM were created based on the weed maps-the third research contribution-which could help farmers in decision-making to optimize crop management by rationalization of the herbicide application. The short time involved in the process (image capture and analysis) would allow timely weed control during critical periods, crucial for preventing yield loss.
Remote sensing is important to precision agriculture and the spatial resolution provided by Unmanned Aerial Vehicles (UAVs) is revolutionizing precision agriculture workflows for measurement crop condition and yields over the growing season, for identifying and monitoring weeds and other applications. Monitoring of individual trees for growth, fruit production and pest and disease occurrence remains a high research priority and the delineation of each tree using automated means as an alternative to manual delineation would be useful for long-term farm management. In this paper, we detected citrus and other crop trees from UAV images using a simple convolutional neural network (CNN) algorithm, followed by a classification refinement using superpixels derived from a Simple Linear Iterative Clustering (SLIC) algorithm. The workflow performed well in a relatively complex agricultural environment (multiple targets, multiple size trees and ages, etc.) achieving high accuracy (overall accuracy = 96.24%, Precision (positive predictive value) = 94.59%, Recall (sensitivity) = 97.94%). To our knowledge, this is the first time a CNN has been used with UAV multi-spectral imagery to focus on citrus trees. More of these individual cases are needed to develop standard automated workflows to help agricultural managers better incorporate large volumes of high resolution UAV imagery into agricultural management operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.