This article represents a 1st step toward understanding the well-posedness of the dispersive Hunter–Saxton equation, which arises in the study of nematic liquid crystals. Although the equation has formal similarities with the KdV equation, the lack of $L^2$ control gives it a quasilinear character. Further, the lack of spatial decay obstructs access to dispersive tools, including local smoothing estimates. Here, we give the 1st proof of local and global well-posedness for the Cauchy problem. Secondly, we improve our well-posedness results with respect to the low regularity of the initial data. The key techniques we use include constructing modified energies to realize a normal form analysis in our quasilinear setting, and frequency envelopes to prove continuous dependence with respect to the initial data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.