Amplification of innate immune responses by endogenous danger-associated molecular patterns (DAMPs) promotes inflammation. The involvement of S100A8 and S100A9, DAMPs belonging to the S100 calgranulin family, in the pathogenesis of cardiovascular disease is attracting an increasing amount of interest. S100A8 and S100A9 (also termed MRP8 and MRP14) preferentially form the S100A8/A9 heterodimer (MRP8/14 or calprotectin) and are constitutively expressed in myeloid cells. The levels of circulating S100A8/A9 in humans strongly correlate to blood neutrophil counts and are increased by traditional cardiovascular risk factors such as smoking, obesity, hyperglycemia, and dyslipidemia. S100A8/A9 is an endogenous ligand of toll-like receptor 4 (TLR4) and of the receptor for advanced glycation end products (RAGE) and has been shown to promote atherogenesis in mice. In humans, S100A8/A9 correlates with the extent of coronary and carotid atherosclerosis and with a vulnerable plaque phenotype. S100A8/A9 is locally released following myocardial infarction and amplifies the inflammatory responses associated with myocardial ischemia/reperfusion injury. Elevated plasma levels of S100A8/A9 are associated with increased risk of future coronary events in healthy individuals and in myocardial infarction survivors. Thus, S100A8/A9 might represent a useful biomarker and therapeutic target in cardiovascular disease. Importantly, S100A8/A9 blockers have been developed and are approved for clinical testing.
Objective-The S100 alarmins A8, A9, and A8/A9, secreted by activated neutrophils and monocytes/macrophages, are involved in the pathogenesis of various inflammatory diseases. S100A8/A9 has previously been linked to atherogenesis and cardiovascular (CV) disease. We investigated whether S100A8, A9, and A8/A9 correlate with carotid artery disease and CV risk in apparently healthy individuals. Approach and Results-We measured baseline S100A8, A9, and A8/A9 in 664 individuals aged 63 to 68 years, with no previous history of CV disease, randomly selected from the Malmö Diet and Cancer population cohort. We examined the correlations between S100 proteins and circulating cell populations, plasma cytokines, carotid artery disease, and incidence of CV events during a median follow-up period of 16.2 years. We found that plasma S100A8/A9 concentration is positively influenced by circulating neutrophil numbers, smoking, body mass index, glycosylated hemoglobin A1c, and low-density lipoprotein. High-density lipoprotein was negatively associated with S100A8/A9. S100A8/A9 and the neutrophil counts were positively correlated with intima-media area in the common carotid artery, independently of age, sex, and CV risk factors. S100A8/A9 and circulating neutrophils presented similar associations with the incidence of coronary events (hazard ratio . These relationships were mainly supported by strong associations in women, which were independent of traditional risk factors. There were no independent relationships between S100A8 and S100A9, and CV disease. Conclusions-Our study supports the value of S100A8/A9 as a potentially important link between neutrophils, traditional CV risk factors, and CV disease. [
There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for wholeroot decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open-close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing of valve functionality.
BackgroundThe inflammatory mediator procalcitonin (PCT) has previously been associated with prognosis in myocardial infarction, cancer and sepsis patients. The importance of PCT in the general population is currently unknown. Our aim was to assess the relationship between plasma PCT and the risk of all-cause and cause-specific mortality in apparently healthy individuals with no previous history of cardiovascular disease or cancer.MethodsWe performed a prospective, population-based study on 3,322 individuals recruited from the Malmö Diet and Cancer cohort, with a median follow-up time of 16.2 years. Plasma PCT, high-sensitivity C-reactive protein (hsCRP), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides and cystatin C were measured at baseline and a thorough risk factor assessment was performed for all subjects. The primary end-points of the study were all-cause mortality, cancer mortality and cardiovascular mortality.ResultsMen had higher PCT levels compared to women. In Cox proportional hazard models adjusted for age, sex, hypertension, diabetes, plasma lipids, renal function, body mass index and smoking, baseline PCT was associated with all-cause mortality and cancer mortality in men. The hazard ratio (HR) for men with PCT levels within the highest compared with the lowest quartile was 1.52 (95% confidence interval (CI) 1.07 to 2.16; P = 0.024) for all-cause mortality and 2.37 (95% CI 1.36 to 4.14; P = 0.006) for cancer mortality. Additionally, men with increased plasma PCT were found to be at a higher risk to develop colon cancer (HR per 1 SD increase = 1.49 (95% CI 1.13 to 1.95); P = 0.005). In multivariate Cox regression analyses with mutual adjustments for PCT and hsCRP, PCT was independently associated with cancer death (HR per 1 SD increase = 1.28 (95% CI 1.10 to 1.49); P = 0.001) and hsCRP with cardiovascular death (HR per 1 SD increase = 1.42 (95% CI 1.11 to 1.83); P = 0.006) in men. We found no significant correlations between baseline PCT or hsCRP and incident cancer or cardiovascular death in women.ConclusionsWe disclose for the first time important independent associations between PCT and the risk for all-cause and cancer mortality in apparently healthy men. Our findings warrant further investigation into the mechanisms underlying the relationship between PCT and cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.