Six mutants of SLO-1, a large-conductance, Ca(2+)-activated K(+) channel of C. elegans, were obtained in a genetic screen for regulators of neurotransmitter release. Mutants were isolated by their ability to suppress lethargy of an unc-64 syntaxin mutant that restricts neurotransmitter release. We measured evoked postsynaptic currents at the neuromuscular junction in both wild-type and mutants and observed that the removal of SLO-1 greatly increased quantal content primarily by increasing duration of release. The selective isolation of slo-1 as the only ion channel mutant derived from a whole genomic screen to detect regulators of neurotransmitter release suggests that SLO-1 plays an important, if not unique, role in regulating neurotransmitter release.
Synaptobrevins are vesicle-associated proteins implicated in neurotransmitter release by both biochemical studies and perturbation experiments that use botulinum toxins. To test these models in vivo, we have isolated and characterized the first synaptobrevin mutants in metazoans and show that neurotransmission is severely disrupted in mutant animals. Mutants lacking snb-1 die just after completing embryogenesis. The dying animals retain some capability for movement, although they are extremely uncoordinated and incapable of feeding. We also have isolated and characterized several hypomorphic snb-1 mutants. Although fully viable, these mutants exhibit a variety of behavioral abnormalities that are consistent with a general defect in the efficacy of synaptic transmission. The viable mutants are resistant to the acetylcholinesterase inhibitor aldicarb, indicating that cholinergic transmission is impaired. Extracellular recordings from pharyngeal muscle also demonstrate severe defects in synaptic transmission in the mutants. The molecular lesions in the hypomorphic alleles reside on the hydrophobic face of a proposed amphipathic-helical region implicated biochemically in interacting with the t-SNAREs syntaxin and SNAP-25. Finally, we demonstrate that double mutants lacking both the v-SNAREs synaptotagmin and snb-1 are phenotypically similar to snb-1 mutants and less severe than syntaxin mutants. Our work demonstrates that synaptobrevin is essential for viability and is required for functional synaptic transmission. However, our analysis also suggests that transmitter release is not completely eliminated by removal of either one or both v-SNAREs.
We describe the molecular cloning and characterization of the unc-64 locus of Caenorhabditis elegans. unc-64 expresses three transcripts, each encoding a molecule with 63-64% identity to human syntaxin 1A, a membrane-anchored protein involved in synaptic vesicle fusion. Interestingly, the alternative forms of syntaxin differ only in their Cterminal hydrophobic membrane anchors. The forms are differentially expressed in neuronal and secretory tissues; genetic evidence suggests that these forms are not functionally equivalent. A complete loss-of-function mutation in unc-64 results in a worm that completes embryogenesis, but arrests development shortly thereafter as a paralyzed L1 larva, presumably as a consequence of neuronal dysfunction. The severity of the neuronal phenotypes of C. elegans syntaxin mutants appears comparable to those of Drosophila syntaxin mutants. However, nematode syntaxin appears not to be required for embryonic development, for secretion of cuticle from the hypodermis, or for the function of muscle, in contrast to Drosophila syntaxin, which appears to be required in all cells. Less severe viable unc-64 mutants exhibit a variety of behavioral defects and show strong resistance to the acetylcholinesterase inhibitor aldicarb. Extracellular physiological recordings from pharyngeal muscle of hypomorphic mutants show alterations in the kinetics of transmitter release. The lesions in the hypomorphic alleles map to the hydrophobic face of the H3 coiled-coil domain of syntaxin, a domain that in vitro mediates physical interactions with similar coiled-coil domains in SNAP-25 and synaptobrevin. Furthermore, the unc-64 syntaxin mutants exhibit allele-specific genetic interactions with mutants carrying lesions in the coiled-coil domain of synaptobrevin, providing in vivo evidence for the significance of these domains in regulating synaptic vesicle fusion. INTRODUCTIONCommunication between neurons at synaptic contacts occurs through the regulated release of chemical neurotransmitters. This release process is mediated by fusion of transmitter-filled vesicles with the plasma membrane. Through both biochemical and genetic studies, several dozen proteins have been implicated in this fusion process in neurons Sollner and Rothman, 1994;Sudhof, 1995). A central player is the integral membrane protein syntaxin (Bennett et al., 1992). In neurons, syntaxin is found in abundance on the plasma membrane and also in low levels in synaptic vesicles (Bennett et al., 1992;Galli et al., 1995;Walch-Solimena et al., 1995). A vast array of experiments all indicate that syntaxin plays a critical role in regulating neurotransmitter release in neurons. For example, serotype C neurotoxin from Clostridium botulinum, which is a potent inhibitor of synaptic transmission, is a metalloprotease with high specificity for cleaving syntaxin (Blasi et al., 1993;Schiavo et al., 1995) Moreover, physiological recordings from Drosophila syntaxin mutants reveal the absence of both induced and spontaneous fusion events, * Corresponding author.© ...
C. elegans aex-3 mutations cause pleiotropic behavioral defects that are suggestive of reduced synaptic transmission. aex-3 mutations also show strong genetic interactions with mutations in unc-31 and unc-64, two other genes implicated in synaptic transmission. Physiological and pharmacological studies indicate that aex-3 defects are presynaptic. In aex-3 mutants, the synaptic vesicle-associated RAB-3 protein aberrantly accumulates in neuronal cell bodies and is reduced in synapse-rich axons. This localization defect is specific to RAB-3, since other synaptic proteins are localized normally in aex-3 mutants. aex-3 encodes a 1409 amino acid protein with strong homology to DENN, a human protein of unknown function. In C. elegans, aex-3 is expressed in all or nearly all neurons. These results suggest that AEX-3 is a novel regulator of presynaptic activity that interacts with RAB-3 to regulate synaptic vesicle release.
The molecular mechanisms underlying general anesthesia are unknown. For volatile general anesthetics (VAs), indirect evidence for both lipid and protein targets has been found. However, no in vivo data have implicated clearly any particular lipid or protein in the control of sensitivity to clinical concentrations of VAs. Genetics provides one approach toward identifying these mechanisms, but genes strongly regulating sensitivity to clinical concentrations of VAs have not been identified. By screening existing mutants of the nematode Caenorhabditis elegans, we found that a mutation in the neuronal syntaxin gene dominantly conferred resistance to the VAs isof lurane and halothane. By contrast, other mutations in syntaxin and in the syntaxin-binding proteins synaptobrevin and SNAP-25 produced VA hypersensitivity. The syntaxin allelic variation was striking, particularly for isof lurane, where a 33-fold range of sensitivities was seen. Both the resistant and hypersensitive mutations decrease synaptic transmission; thus, the indirect effect of reducing neurotransmission does not explain the VA resistance. As assessed by pharmacological criteria, halothane and isof lurane themselves reduced cholinergic transmission, and the presynaptic anesthetic effect was blocked by the resistant syntaxin mutation. A single gene mutation conferring highlevel resistance to VAs is inconsistent with nonspecific membrane-perturbation theories of anesthesia. The genetic and pharmacological data suggest that the resistant syntaxin mutant directly blocks VA binding to or efficacy against presynaptic targets that mediate anesthetic behavioral effects. Syntaxin and syntaxin-binding proteins are candidate anesthetic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.