The pharmaceutical industry remains under huge pressure to address the high attrition rates in drug development. Attempts to reduce the number of efficacy- and safety-related failures by analysing possible links to the physicochemical properties of small-molecule drug candidates have been inconclusive because of the limited size of data sets from individual companies. Here, we describe the compilation and analysis of combined data on the attrition of drug candidates from AstraZeneca, Eli Lilly and Company, GlaxoSmithKline and Pfizer. The analysis reaffirms that control of physicochemical properties during compound optimization is beneficial in identifying compounds of candidate drug quality and indicates for the first time a link between the physicochemical properties of compounds and clinical failure due to safety issues. The results also suggest that further control of physicochemical properties is unlikely to have a significant effect on attrition rates and that additional work is required to address safety-related failures. Further cross-company collaborations will be crucial to future progress in this area.
Indole derivative 1 interferes with the interaction of the HIV surface protein gp120 with the host cell receptor CD4. The 4-fluoro derivative 2 exhibited markedly enhanced potency and was bioavailable in the rat, dog, and cynomolgus monkey when administered orally as a solution formulation. However, aqueous suspensions of 2 were poorly bioavailable, indicative of dissolution-limited absorption. The 7-azaindole derivative 3, BMS-378806, exhibited improved pharmaceutical properties while retaining the HIV-1 inhibitory profile of 2.
The use of selective estrogen receptor modulators for the treatment of estrogen-dependent diseases in premenopausal women has been hindered by undesirable ovarian stimulation and associated risks of ovarian cysts. We have identified a selective estrogen receptor modulator compound (LY2066948) that is a strong estrogen antagonist in the uterus yet has minimal effects on the ovaries of rats. LY2066948 binds with high affinity to both estrogen receptors and has potent estrogen antagonist activity in human uterine and breast cancer cells. Oral administration of LY2066948 to immature rats blocked uterine weight gain induced by ethynyl estradiol with an ED50 of 0.07 mg/kg. Studies in mature rats demonstrated that LY2066948 decreases uterine weight by 51% after 35 d treatment, confirming potent uterine antagonist activity over several estrous cycles. This strong uterine response contrasted with the minimal effects on the ovaries: serum estradiol levels remained within the normal range, whereas histologic evaluation showed granulosa cell hyperplasia in few of the rats. Bone studies demonstrated that LY2066948 prevented ovariectomy-induced bone loss and treatment of ovary-intact rats caused no bone loss, confirming estrogen receptor agonist skeletal effects. Collectively, these data show that LY2066948 exhibits a tissue-specific profile consistent with strong antagonist activity in the uterus, agonist activity in bone, and minimal effects in the ovaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.