The standard approach to evaluate Hecke eigenvalues of a Siegel modular eigenform F is to determine a large number of Fourier coefficients of F and then compute the Hecke action on those coefficients. We present a new method based on the numerical evaluation of F at explicit points in the upper-half space and of its image under the Hecke operators. The approach is more efficient than the standard method and has the potential for further optimization by identifying good candidates for the points of evaluation, or finding ways of lowering the truncation bound. A limitation of the algorithm is that it returns floating point numbers for the eigenvalues; however, the working precision can be adjusted at will to yield as close an approximation as needed. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.