Optical fiber Bragg gratings (FBGs) are well suited for applications as temperature or/and strain sensors in harsh environments, e.g., detecting thermal hot spots in high-temperature superconductor (HTS) fusion energy magnets at cryogenic temperatures and high radiation environments. To maximize the signal-to-noise ratio (SNR) of the FBGs to a hot spot, we propose to have them mounted in V-shaped grooves of HTS’ copper former. To investigate the differences between different adhesives on transferring strain and heat in this configuration, five arrays of FBGs are mounted in the V-shaped grooves of a copper dog-bone using Scotch-Weld epoxy, Stycast 2850 FT, Apiezon N, and Loctite 5145 silicone. The copper is cycled through tensile forces in a modified universal tensile tester, subjected to a thermal cycle between 293 K and 77 K, and exposed to heat pulse propagations at 293 K and 80 K. The FBGs that are bonded using Stycast show the highest temperature and strain sensitivities at room and cryogenic temperatures. No major differences in the temperature and strain sensitivities have been found between Ormocer and polyimide coated FBGs. Apiezon N is found to transfer strain consistently well below 245 K, which is comparable with other bonding materials in the temperature range between 77 K and 110 K. The FBGs bonded with the four adhesives in the V-groove configurations are shown to have comparable SNRs to a temperature rise of 20 K at 80 K. This paper emphasizes the importance of maximizing the thermal strain transferred from the host material through the bonding agents to achieve high temperature sensitivity of FBGs.
We investigated the effects of gamma irradiation on radiation-induced attenuation (RIA) in photosensitive (Ge-doped) and radiation-hard (F-doped) fibers at cryogenic temperatures (77 K) under different photobleaching conditions. We show that increasing the probe power (1550 nm) and injecting lower wavelength light (970 nm) both resulted in a significant reduction in RIA in both fiber types, where radiation-hard fibers were intrinsically more resistant to the RIA. Deconvolution of RIA growth curves revealed that the RIA was composed of transient and long-term growth components that were correlated with distinct radiation-induced defects specific to each fiber composition. The 1550 nm light more effectively suppressed the transient RIA, while 970 nm more effectively suppressed the long-term RIA. Ultimately, we show that cryogenic RIA may be effectively managed in fiber optic sensing systems using radiation-hard fibers and dual-wavelength photobleaching strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.