Research purpose:The main aim of the study was to apply extreme value theory results to quantify the extreme downside risk and upside risk of the South African Financial Index (J580).Motivation for the study: Financial markets have been characterised by significant instabilities caused by occurrence of extreme events. This means there is a need to develop proper risk management models that can accurately assess these extreme events.Research approach, design and method: The peak over threshold approach was used to obtain the excess returns over the threshold. The generalised Pareto distribution (GPD) was fitted to the excess returns over the threshold to estimate the parameters, which were used to quantify the downside and upside risk in the form of value at risk and expected shortfall.
Main findings:The findings indicate that the upside risk of the Financial Index (J580) outweighs the downside risk.Practical/managerial implications: These findings would be important for hedging purposes, investment decision-making and help risk analysts to monitor the exposure of market risk and protect their investment portfolios accordingly.Contribution/value-add: This article will contribute to empirical evidence of the research into the behaviour of the extreme returns on the Johannesburg Stock Exchange. The GPD model formulated will be used to assess tail-related risk.
The aim of this study is to model the probabilistic behaviour of unusually large financial losses (extreme-risk)and gains of the South African Financial Index (J580). Risk is defined as uncertainty in return in this paper. This study makes use of Extreme Value Theory (EVT) for the period years: 1995-2018 to build models that are used to estimate extreme losses and gains. The quarterly block maxima/minima of monthly returns are tted to the Generalised Extreme Value Distribution (GEVD). Return levels (maximum loss/gain) based on the parameters from the GEVD are estimated. A comparative analysis with the Generalised Pareto Distribution (GPD) is carried out. The study reveals that EVT provides an efficient method of forecasting potentially high risks in advance. The conclusion is that analysing extreme risk in the South African Financial Index helps investors understand its riskness better and manage to reduce the risk exposure in this portfolio.
This study uses Extreme Value Theory (EVT), Value-at-Risk (VaR) and Expected Shortfall (ES) analysis as a unified tool for managing extreme financial risk. The study extends the application of the generalised Pareto distribution (GPD) by modelling monthly South African Industrial Index (J520) returns (years: 1995C2018) to quantify the tail-related risk measures. The GPD is used to estimate the tail-related risk measures using the Peak over Threshold (PoT) method. Maximum Likelihood Estimates (MLE) of model parameters were obtained and the models goodness of fit was assessed graphically using Quantile-Quantile (QCQ) plots, Probability (PCP) plots, scatter plots, residuals, return levels and density plots. The findings are that the GPD provides an adequate fit to the data of excesses (extreme losses or gains). Low frequency but very high or very low returns impact on investment decisions. Calculations of the VaR and ES tail-related risk measures based on the fitted GPD model are given. The results reveal that for an investment in the South African Industrial Index (J520), the prospect of potential extreme losses is less than the prospect of potential extreme gains. There seems to be an upper bound where losses do not seem to exceed easily. The study concluded that EVT, together with VaR and ES analysis are useful tools that can be applied in practice to manage index/stock price risk and help investors improve their investment decisions and trading strategies through better quality information derived from the tools. This study contributes to empirical evidence on EVT methods that help to protect financial systems against unpredictable fluctuations and losses of extreme nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.