The membrane potential of cytoplasts, derived from human neutrophils, was depolarized by the activation of the superoxide-generating NADPH-dependent oxidase. The extent of the depolarization was inhibited by diphenylene iodonium and was therefore due directly to the activity of the oxidase, which must be electrogenic. The extent of the depolarization was influenced by alteration of the delta pH across the cytoplast membrane, indicating that the outward translocation of H+ eventually compensates for superoxide generation. The depolarization of the potential is enhanced by Cd2+, a blocker of H+ currents, suggesting that the compensatory movement is via an H+ channel.
Diphenyleneiodonium (DPI) and its analogues have been previously shown to react via a radical mechanism whereby an electron is abstracted from a nucleophile to form a radical, which then adds back to the nucleophile to form covalent adducts [Banks (1966) Chem. Rev. 66, 243-266]. We propose that the inhibition of neutrophil NADPH oxidase by DPI occurs via a similar mechanism. A reduced redox centre in the oxidase could serve as electron donor to DPI, and inhibition would occur after direct phenylation of the redox cofactor, or of adjacent amino acid groups by the DPI radical. In the absence of an activatory stimulus, human neutrophil NADPH-oxidase was not inhibited by DPI. The Ki for time-dependent inhibition by DPI of human neutrophil membrane NADPH oxidase was found to be 5.6 microM. Inhibitory potency of DPI was shown to be directly related to rate of enzyme turnover, indicating the need for a reduced redox centre. Adducts were formed between photoreduced flavin (FAD or FMN) and inhibitor (DPI or diphenyliodonium). These were separated by h.p.l.c. and characterized by absorbance spectroscopy, 1H-n.m.r. and fast-atom-bombardment m.s. and found to have properties consistent with substituted 4a,5-dihydroflavins. After incubation of pig neutrophil membranes with DPI, the quantity of recoverable intact flavin was greatly diminished when NADPH was present to initiate oxidase turnover, indicating that the flavin may be the site of DPI activation. These results may provide a common mechanism of action for iodonium compounds as inhibitors of other flavoenzymes.
Low-level generation of reactive oxygen species (ROS) by endothelial cells in response to a variety of stimuli has been observed; however, the enzyme system responsible is unknown. Using a variety of techniques, we examined for components of the phagocyte superoxide-generating NADPH oxidase to elucidate whether this enzyme could be a source of endothelial-derived ROS. Superoxide generation on addition of 100 microM NAD(P)H to human umbilical vein endothelial cell (HUVEC) sonicates (using lucigenin-enhanced chemiluminescence) was partially inhibited on addition of the flavoenzyme inhibitor diphenyliodonium (IDP). Reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated expression of gp91phox, p22phox, p67phox, and p47phox in four independent HUVEC isolates. Expression of p22phox was also confirmed by Northern blotting. RT-PCR for tumor necrosis factor-alpha was negative, indicating an absence of mononuclear cell contamination (a potential source of NADPH oxidase). Immunoperoxidase staining, using anti-p47phox (JW-1)- and anti-p67phox (JW-2)-specific antibodies, showed protein expression of these cytosolic components. However, heme spectroscopy failed to indicate the presence of the low-potential cytochrome b558. These data indicate that cultured human endothelial cells express both mRNA and protein for cytosolic components of the phagocyte superoxide-generating NADPH oxidase. However, because the cytochrome b558 heme could not be conclusively demonstrated, a contribution of the phagocyte NADPH oxidase to endothelial oxidant generation may be unlikely.
NADPH-dependent superoxide production by the solubilized oxidase of neutrophils was inhibited 36% by diphenylene iodonium at a 1:1 stoichiometry with the enzyme flavoprotein content. Addition of diphenylene iodonium strongly inhibited the NADPH-dependent reduction of both FAD and cytochrome b-245 in steady-state kinetic experiments. Incubation of solubilized enzyme with diphenylene [125I]iodonium resulted in the specific labelling of a polypeptide of Mr 45,000. In the presence of NADPH the amount of label incorporated into the polypeptide was reduced. There was no difference in labelling between enzyme prepared from stimulated or unstimulated cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.