Carbon perovskite solar cells (C-PSCs) are a popular photovoltaic technology currently undergoing extensive development on the global research scene. Whilst their record efficiency now rivals that of silicon PV in small-scale devices, C-PSCs still require considerable development to progress to a commercial-scale product. This study is the first of its kind to use broad beam ion milling for C-PSCs. It investigates how the carbon ink, usually optimised for maximum sheet conductivity, impacts the infiltration of the perovskite into the active layers, which in turn impacts the performance of the cells. Through the use of secondary electron microscopy with energy-dispersive X-ray spectroscopy, infiltration defects were revealed relating to carbon flake orientation. The cross sections imaged showed between a 2% and 100% inactive area within the C-PSCs due to this carbon blocking effect. The impact of these defects on the performance of solar cells is considerable, and by better understanding these defects devices can be improved for mass manufacture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.