Understanding the origins of the excessive Stokes shift in the lead chalcogenides family of colloidal quantum dots (CQDs) is of great importance at both the fundamental and applied levels; however, our current understanding is far from satisfactory. Here, utilizing a combination of ab initio computations and UV-vis and photoluminescence measurements, we investigated the contributions to the Stokes shift from polydispersity, ligands, and defects in PbS CQDs. The key results are as follows: (1) The size and energetic disorder of a polydisperse CQD film increase the Stokes shift by 20 to 50 meV compared to that of an isolated CQD; (2) Franck-Condon (FC) shifts increase as the electronegativities of the ligands increase, but the variations are small (<15 meV). (3) Unlike the aforementioned two minor factors, the presence of certain intrinsic defects such as V (in Cl-passivated CQDs) can cause substantial electron density localization of the band edge states and consequent large FC shifts (100s of meV). This effect arising from defects can explain the excessive Stokes shifts in PbS CQDs and improve our understanding of the optical properties of PbS CQDs.
Natural carbons, such as coal and petroleum feedstocks, or the undesirable by-products of subsequent chemical processing of these feedstocks, such as tars, comprise a huge chemical phase space incorporating a wide range of chemical, optical, and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.