We study a type of Online Linear Programming (OLP) problem that maximizes the objective function with stochastic inputs. The performance of various algorithms that analyze this type of OLP is well studied when the stochastic inputs follow some i.i.d distribution. The two central questions to ask are: (i) can the algorithms achieve the same efficiency if the stochastic inputs are not i.i.d but still stationary, and (ii) how can we modify our algorithms if we know the stochastic inputs are trendy, hence not stationary. We answer the first question by analyzing a regenerative type of input and show the regrets of two popular algorithms are bounded by the same orders as their i.i.d counterparts. We discuss the second question in the context of linearly growing inputs and propose a trend-adaptive algorithm. We provide numerical simulations to illustrate the performance of our algorithms under both regenerative and trendy inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.