Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model, Geomorphology (2013) This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. m, while the vertical RMSE of the DTM was 0.29 m, which is equivalent to the RMSE of a bare earth LiDAR DTM for the same site. The combined error from both datasets was used to define a threshold of the minimum elevation difference that could be reliably attributed to erosion or deposition in the seven years separating the sUAS and LiDAR datasets. Overall, our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR for geomorphological mapping.
A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
Small unmanned aircraft systems (UASs) are often suited to applications where the cost, resolution, and (or) operational inflexibility of conventional remote sensing platforms is limiting. Remote sensing with small UASs is still relatively new, and there is limited understanding of how the data are acquired and used for scientific purposes and decision making. This paper provides practical guidance about the opportunities and limitations of small UAS-based remote sensing by highlighting a small sample of scientific and commercial case studies. Case studies span four themes: (i) mapping, which includes case studies to measure aggregate stockpile volumes and map river habitat; (ii) feature detection, which includes case studies on grassland image classification and detection of agricultural crop infection; (iii) wildlife and animal enumeration, with case studies describing the detection of fish concentrations during a major salmon spawning event, and cattle enumeration at a concentrated animal feeding operation; (iv) landscape dynamics with a case study of arctic glacier change. Collectively, these case studies only represent a fraction of possible remote sensing applications using small UASs, but they provide insight into potential challenges and outcomes, and help clarify the opportunities and limitations that UAS technology offers for remote sensing of the environment.Key words: UAS, remote sensing of the environment, case studies, unmanned aerial vehicles, remotely piloted aircraft, remote sensing.Résumé : Les petits systèmes d'aéronef sans pilote (UAS) sont principalement utilisés pour des applications dont les coûts, la résolution et (ou) l'inflexibilité opérationnelle des plateformes de télédétection conventionnelles sont limités. La télédétection à l'aide de petits UAS est encore relativement récente et on connaît mal la façon dont les données sont recueillies puis utilisées à des fins scientifiques et décisionnelles. Le présent exposé fournit des conseils pratiques sur les possibilités et les limites de la télédétection à partir de petits UAS en se servant d'un petit échantillon d'études scientifiques et commerciales. Quatre thèmes sont examinés dans ces différentes études de cas : (i) la cartographie, afin de mesurer les volumes d'aire de stockage des agrégats et établir une représentation graphique de l'habitat d'un cours d'eau; (ii) la détection des caractéristiques, afin d'effectuer la classification des images de dunes et la détection de l'infection de terres agricoles; (iii) le dénombrement de la faune et du bétail, afin de décrire la détection des concentrations de poissons lors de Mots-clés : UAS, télédétection de l'environnement, études de cas, véhicules aériens sans pilote, aéronef téléguidé, télédétection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.