Dendrimers have been proved to interact with amyloids, although most of dendrimers assayed in amyloidogenic systems are toxic to cells. The development of glycodendrimers, poly(propyleneimine) (PPI) dendrimers decorated with maltose (Mal), represents the possibility of using dendrimers with a low intrinsic toxicity. In the present paper we show that fourth (PPI-G4-Mal) and fifth (PPI-G5-Mal) generation glycodendrimers have the capacity to interfere with Alzheimer's amyloid peptide Aβ(1-40) fibrilization. The interaction is generation dependent: PPI-G5-Mal blocks amyloid fibril formation generating granular nonfibrillar amorphous aggregates, whereas PPI-G4-Mal generates clumped fibrils at low dendrimer-peptide ratios and amorphous aggregates at high ratios. Both PPI-G4-Mal and PPI-G5-Mal are nontoxic to PC12 and SH-SY5Y cells. PPI-G4-Mal reduces amyloid toxicity by clumping fibrils together, whereas amorphous aggregates are toxic to PC12 cells. The results show that glycodendrimers are promising nontoxic agents in the search for anti-amyloidogenic compounds. Fibril clumping may be an anti-amyloid toxicity strategy.
Loss of memory during Alzheimer's disease (AD), a fatal neurodegenerative disorder, is associated with neuronal loss and the aggregation of amyloid proteins into neurotoxic β‐sheet enriched structures. However, the mechanism of amyloid protein aggregation is still not well understood due to many challenges when studying the endogenous amyloid structures in neurons or in brain tissue. Available methods either require chemical processing of the sample or may affect the amyloid protein structure itself. Therefore, new approaches, which allow studying molecular structures directly in neurons, are urgently needed. A novel approach is tested, based on label‐free optical photothermal infrared super‐resolution microspectroscopy, to study AD‐related amyloid protein aggregation directly in the neuron at sub‐micrometer resolution. Using this approach, amyloid protein aggregates are detected at the subcellular level, along the neurites and strikingly, in dendritic spines, which has not been possible until now. Here, a polymorphic nature of amyloid structures that exist in AD transgenic neurons is reported. Based on the findings of this work, it is suggested that structural polymorphism of amyloid proteins that occur already in neurons may trigger different mechanisms of AD progression.
Amyloid peptides are the main component of one of the characteristic pathological hallmarks of Alzheimer's disease (AD): senile plaques. According to the amyloid cascade hypothesis, amyloid peptides may play a central role in the sequence of events that leads to neurodegeneration. However, there are other factors, such as oxidative stress, that may be crucial for the development of the disease. In the present paper, we show that it is possible, by using Fourier tranform infrared (FTIR) microscopy, to co-localize amyloid deposits and lipid peroxidation in tissue slides from patients affected by Alzheimer's disease. Plaques and lipids can be analyzed in the same sample, making use of the characteristic infrared bands for peptide aggregation and lipid oxidation. The results show that, in samples from patients diagnosed with AD, the plaques and their immediate surroundings are always characterized by the presence of oxidized lipids. As for samples from non-AD individuals, those without amyloid plaques show a lower level of lipid oxidation than AD individuals. However, it is known that plaques can be detected in the brains of some non-AD individuals. Our results show that, in such cases, the lipid in the plaques and their surroundings display oxidation levels that are similar to those of tissues with no plaques. These results point to lipid oxidation as a possible key factor in the path that goes from showing the typical neurophatological hallmarks to suffering from dementia. In this process, the oxidative power of the amyloid peptide, possibly in the form of nonfibrillar aggregates, could play a central role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.