A system for utilizing an artificial neural network to predict splice sites in genes has been studied. The neural network uses a sliding window of nucleotides over a gene and predicts possible splice sites. Based on the neural network output, the exact location of the splice site is found using a curve fitting of a parabolic function. The splice site location is predicted without prior knowledge of any sensor signals, like 'GT' or 'GC' for the donor splice sites, or 'AG' for the acceptor splice sites. The neural network has been trained using backpropagation on a set of 16965 genes of the model plant Arabidopsis thaliana. The performance is then measured using a completely distinct gene set of 5000 genes, and verified at a set of 20 genes. The best measured performance on the verification data set of 20 genes, gives a sensitivity of 0.891, a specificity of 0.816 and a correlation coefficient of 0.552.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.