This paper presents the first steps towards a District Energy Simulation Test (DESTEST), which is part of IBPSA Project 1. The goal is to develop a test sequel for district energy simulations, inspired by principles of the BESTEST. It aims at providing a means to validate District Energy System models. The description of the DESTEST cases and the simulation results of extensively verified models will be available as a reference for verification. By presenting the research plan, goal and first results, the district energy simulation community is informed about the project's intentions, offering a chance for feedback and collaboration.
Direct electricity is widely used for heating purposes in Norway, leading to significant strain on the electricity grid during the heating season. Conversion to 4th generation district heating (4GDH) is an effective method for reducing the need for large investments in the electricity grid, while simultaneously improving the energy efficiency of district heating systems. This article evaluates the possibility of reducing the supply temperature in existing Norwegian apartment blocks by improving the thermal envelope and reducing the temperature levels for the heating system. The analysis is based on simulations in IDA ICE (IDA Indoor Climate and Energy) focusing on whether the reduced supply temperature guarantees thermal comfort in the building, considering the coldest room with a heating setpoint of 22 °C. Based on a recommended minimum acceptable indoor temperature of 19 °C from the Norwegian building regulations (TEK), it should be possible to lower the radiator supply temperature from 80 to 60 °C for apartment blocks newer than 1971. For older buildings, an “intermediate” renovation is necessary to maintain temperatures above 19 °C, however, a “standard” renovation is recommended to ensure thermal comfort and improve the energy efficiency of the building stock.
Heat recovery in ventilation is essential to reduce energy use and thus mitigate greenhouse gas emissions from the building sector. Heat recovery efficiency of at least 80 % in new buildings is required according to Norwegian standards. However, measurements show that the real heat recovery efficiency during operation is commonly 10-20 % lower. Measuring heat recovery efficiency in buildings is challenging, mainly due to difficulties measuring airflow rates close to the air handling unit (AHU). This study assesses the following duct airflow measurement techniques and equipment: pressure differential, velocity traversal technique, ultrasound and tracer gas. The pressure differential method can provide accurate flow rates and thus it is used as the reference measurement. However, it is not suitable for duct flow measurements due to its high pressure penalty and long straight duct requirement. Velocity traverse and tracer gas methods introduce less disturbance to the flow. Nevertheless, both methods require intensive labour work and cannot track quick changes of the airflow with time. The application of ultrasound to measure airflow is relatively novel and it can automatically measure constant and fluctuating airflows with low pressure drop and acceptable accuracy when the proper installation and minimum straight duct are provided.
The cost-effectiveness of energy efficiency measures meant to achieve a zero-emission office building is investigated and compared to business as usual energy efficiency measures. The laboratory for zero emission buildings, the ZEB Lab, located in Trondheim, Norway, is an office building designed and built to compensate its lifecycle emissions with the use of a large array of building-integrated photovoltaic panels, pursuing a zero-emissions ambition level. Three design alternatives are investigated by downgrading the building insulation level to the values recommended by the currently enforced Norwegian building code, the byggteknisk forskrift TEK17. A sensitivity analysis of the variation of the installed area of the photovoltaic panels is performed to evaluate if smaller areas give better cost performances. Net present values are calculated by using three scenarios of future increase of electricity price for a time horizon of 20 years. Results show that business as usual solutions give higher net present values. Optimized areas of the photovoltaic panels further increase the net present values of the business as usual solutions in the highest electricity price scenario. The zero-emission ambition level shows a higher net present value than that of the business as usual solutions for a time horizon of at least 36 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.