Machine learning and artificial intelligence have achieved a human-level performance in many application domains, including image classification, speech recognition and machine translation. However, in the financial domain expert-based credit risk models have still been dominating. Establishing meaningful benchmark and comparisons on machine-learning approaches and human expert-based models is a prerequisite in further introducing novel methods. Therefore, our main goal in this study is to establish a new benchmark using real consumer data and to provide machine-learning approaches that can serve as a baseline on this benchmark. We performed an extensive comparison between the machine-learning approaches and a human expert-based model—FICO credit scoring system—by using a Survey of Consumer Finances (SCF) data. As the SCF data is non-synthetic and consists of a large number of real variables, we applied two variable-selection methods: the first method used hypothesis tests, correlation and random forest-based feature importance measures and the second method was only a random forest-based new approach (NAP), to select the best representative features for effective modelling and to compare them. We then built regression models based on various machine-learning algorithms ranging from logistic regression and support vector machines to an ensemble of gradient boosted trees and deep neural networks. Our results demonstrated that if lending institutions in the 2001s had used their own credit scoring model constructed by machine-learning methods explored in this study, their expected credit losses would have been lower, and they would be more sustainable. In addition, the deep neural networks and XGBoost algorithms trained on the subset selected by NAP achieve the highest area under the curve (AUC) and accuracy, respectively.
BackgroundPairwise relationships extracted from biomedical literature are insufficient in formulating biomolecular interactions. Extraction of complex relations (namely, biomedical events) has become the main focus of the text-mining community. However, there are two critical issues that are seldom dealt with by existing systems. First, an annotated corpus for training a prediction model is highly imbalanced. Second, supervised models trained on only a single annotated corpus can limit system performance. Fortunately, there is a large pool of unlabeled data containing much of the domain background that one can exploit.ResultsIn this study, we develop a new semi-supervised learning method to address the issues outlined above. The proposed algorithm efficiently exploits the unlabeled data to leverage system performance. We furthermore extend our algorithm to a two-phase learning framework. The first phase balances the training data for initial model induction. The second phase incorporates domain knowledge into the event extraction model. The effectiveness of our method is evaluated on the Genia event extraction corpus and a PubMed document pool. Our method can identify a small subset of the majority class, which is sufficient for building a well-generalized prediction model. It outperforms the traditional self-training algorithm in terms of f-measure. Our model, based on the training data and the unlabeled data pool, achieves comparable performance to the state-of-the-art systems that are trained on a larger annotated set consisting of training and evaluation data.
Abstract-In this paper, a novel method is proposed to build an ensemble of classifiers by using a feature selection schema. The feature selection schema identifies the best feature sets that affect the arrhythmia classification. Firstly, a number of feature subsets are extracted by applying the feature selection schema to the original dataset. Then classification models are built by using the each feature subset. Finally, we combine the classification models by adopting a voting approach to form a classification ensemble. The voting approach in our method involves both classification error rate and feature selection rate to calculate the score of the each classifier in the ensemble. In our method, the feature selection rate depends on the extracting order of the feature subsets. In the experiment, we applied our method to arrhythmia dataset and generated three top disjointed feature sets. We then built three classifiers based on the top-three feature subsets and formed the classifier ensemble by using the voting approach. Our method can improve the classification accuracy in high dimensional dataset. The performance of each classifier and the performance of their ensemble were higher than the performance of the classifier that was based on whole feature space of the dataset. The classification performance was improved and a more stable classification model could be constructed with the proposed approach.
Credit scoring is a process of determining whether a borrower is successful or unsuccessful in repaying a loan using borrowers’ qualitative and quantitative characteristics. In recent years, machine learning algorithms have become widely studied in the development of credit scoring models. Although efficiently classifying good and bad borrowers is a core objective of the credit scoring model, there is still a need for the model that can explain the relationship between input and output. In this work, we propose a novel partially interpretable adaptive softmax (PIA-Soft) regression model to achieve both state-of-the-art predictive performance and marginally interpretation between input and output. We augment softmax regression by neural networks to make it adaptive for each borrower. Our PIA-Soft model consists of two main components: linear (softmax regression) and non-linear (neural network). The linear part explains the fundamental relationship between input and output variables. The non-linear part serves to improve the prediction performance by identifying the non-linear relationship between features for each borrower. The experimental result on public benchmark datasets shows that our proposed model not only outperformed the machine learning baselines but also showed the explanations that logically related to the real-world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.