Background Circulating cardiac troponin levels increase following prolonged intense physical exercise. The aim of this study was to identify participants with highly elevated cardiac troponins after prolonged, high intensity exercise, and to evaluate these for subclinical coronary artery disease. Methods and results Ninety-seven recreational cyclists without known cardiovascular disease or diabetes, participating in a 91 km mountain bike race were included, 74 (76%) were males, age: 43 ± 10 years, race duration: 4.2 (3.6-4.7) h. Blood samples, rest electrocardiogram and physical examination were obtained 24 h prior to, and at 0, 3 and 24 h following the race. Median cardiac troponin I level at baseline: 3.4 (2.1-4.9) ng/l (upper limit of normal: 30.0 ng/l). There was a highly significant ( p < 0.0001) increase in circulating cardiac troponin I in all participants: immediately following the race; 50.5 (28.5-71.9) ng/l, peaking at 3 h 69.3 (42.3-97.7) ng/l and declining at 24 h: 14.2 (8.5-27.9) ng/l. No cyclist had symptoms or rest electrocardiogram changes compatible with coronary artery disease during or following the race. Coronary artery disease was detected by coronary angiography in the three cyclists with the three of the four highest cardiac troponin values (>370 ng/l) at 3 and 24 h following the race. Computed tomographic coronary angiography was performed in an additional 10 riders with the subsequently highest cardiac troponin I values, without identifying underlying coronary artery disease. Conclusions This study suggests that there is a pathologic cardiac troponin I response following exercise in individuals with subclinical coronary artery disease. This response may be associated with an excessive cardiac troponin I increase at 3 and 24 h following prolonged high-intensity exercise.
Serological assessment of cardiac troponins (cTn) is the gold standard to assess myocardial injury in clinical practice. A greater magnitude of acutely or chronically elevated cTn concentrations is associated with lower event-free survival in patients and the general population. Exercise training is known to improve cardiovascular function and promote longevity, but exercise can produce an acute rise in cTn concentrations, which may exceed the upper reference limit in a substantial number of individuals. Whether exercise-induced cTn elevations are attributable to a physiological or pathological response and if they are clinically relevant has been debated for decades. Thus far, exercise-induced cTn elevations have been viewed as the only benign form of cTn elevations. However, recent studies report intriguing findings that shed new light on the underlying mechanisms and clinical relevance of exercise-induced cTn elevations. We will review the biochemical characteristics of cTn assays, key factors determining the magnitude of postexercise cTn concentrations, the release kinetics, underlying mechanisms causing and contributing to exercise-induced cTn release, and the clinical relevance of exercise-induced cTn elevations. We will also explain the association with cardiac function, correlates with (subclinical) cardiovascular diseases and exercise-induced cTn elevations predictive value for future cardiovascular events. Last, we will provide recommendations for interpretation of these findings and provide direction for future research in this field.
This author takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
Background The precise mechanisms causing cardiac troponin ( cT n) increase after exercise remain to be determined. The aim of this study was to investigate the impact of heart rate (HR) on exercise‐induced cT n increase by using sports watch data from a large bicycle competition. Methods and Results Participants were recruited from NEEDED (North Sea Race Endurance Exercise Study). All completed a 91‐km recreational mountain bike race (North Sea Race). Clinical status, ECG , blood pressure, and blood samples were obtained 24 hours before and 3 and 24 hours after the race. Participants (n=177) were, on average, 44 years old; 31 (18%) were women. Both cTnI and cTnT increased in all individuals, reaching the highest level (of the 3 time points assessed) at 3 hours after the race ( P <0.001). In multiple regression models, the duration of exercise with an HR >150 beats per minute was a significant predictor of both cTnI and cTnT , at both 3 and 24 hours after exercise. Neither mean HR nor mean HR in percentage of maximum HR was a significant predictor of the cT n response at 3 and 24 hours after exercise. Conclusions The duration of elevated HR is an important predictor of physiological exercise‐induced cT n elevation. Clinical Trial Registration URL : https://www.clinicaltrials.gov/ . Unique identifier: NCT 02166216.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.