That sexually mature fish skip reproduction, especially in response to poor condition, has been documented in many species. We present results from an energy-allocation life history model that shed light on the underlying logic of skipped spawning, based on the Northeast Arctic stock of Atlantic cod (Gadus morhua). The model predicts that skipped spawning is a regular phenomenon, with up to 30% of the sexually mature biomass skipping spawning. Spawning should be skipped if the expected future gain in reproductive output, discounted by survival, more than balances the expected reproductive success the current year. Skipped spawning was most common (i) among potential second-time spawners and (ii) early in life, (iii) when fishing mortality at the spawning grounds was high, (iv) when fishing mortality at the feeding grounds was low, (v) when natural mortality was low, and (vi) when the energetic and mortality costs associated with migration and spawning were high. Cod skipped spawning more often when food availability was both increased (opportunities for better growth) and decreased (too little energy for gonad development), and this pattern interacted with mortality rate. We conclude that skipped spawning may be more widespread than appreciated and highlight potential consequences for the understanding of stockrecruitment relationships.
Individuals migrate to exploit heterogeneities between spatially separated environments to modulate growth, survival, or reproduction. We devised a bioenergetics model to investigate the evolution of migration distance and its dependence on individual states. Atlantic cod Gadus morhua ranges from sedentary populations to stocks that migrate several thousand kilometers annually. We focused on the Northeast Arctic cod stock, which migrates south to spawn. A linear relationship between migration distance and the expected survival of offspring was assumed, here understood as the prospects for future survival and development that a fertilized egg faces at a particular spawning location. Reasons for why it may increase southward include warmer water that increases development rates, and thereby survival, along the pelagic drift trajectory. In the model, ingested energy can either be allocated to growth or stored for migration and reproduction. When migrating, individuals forgo foraging opportunities and expend energy. Optimal energy allocation and migration strategies were found using state-dependent optimization, with body length, age, condition, and current food availability as individual states. For both a historical and contemporary fishing regime we modeled two behaviors: (1) homing cod returning to the same spawning site each year and (2) roaming cod with no such constraints. The model predicted distinct regions of locally high spawning stock biomass. Large individuals in good condition migrated farthest, and these also tended to mature later in life. The roaming cod spread farther south as they grew larger and older. Homing cod did not have this freedom, and spawning was generally concentrated along a narrower stretch of the coastline. Under contemporary fishing, individuals matured earlier at a smaller size, had shorter migrations, spawned over a contracted geographical range, and tended to be in poorer condition. The effects were most pronounced for the homing behavior.
Highly resolved general circulation models (GCMs) now generate realistic flow fields, and have revealed how sensitive larval drift routes are to vertical positioning in the water column. Sensible representation of behavioural processes then becomes essential to generate reliable patterns of environmental exposure (growth and survival), larval drift trajectories and dispersal. Existing individual-based models involving larval fish allow individuals to vary only in their attributes such as spatial coordinates, and not in their inherited behavioural strategies or phenotypes. We illustrate the interaction between short-term behaviour and longer-term dispersal consequences applying a model of larval cod Gadus morhua drifting in a GCM, and show how variations in swimming behaviour influence growth and dispersal. We recommend a deep integration of oceanography and behavioural ecology. First, we need to understand the causes and survival value of behaviours of larval fish, framed in terms of behavioural ecology. Second, we need practices to address how drift and dispersal of offspring are generating spawning strategies (timing and location) of adults, using life history theory. Third, the relative importance of local growth and mortality versus the need to drift to particular areas depend strongly on the mobility of organisms at the time of settling, or the spatial fitnesslandscape. The field of 'individual-based ecology' provides sound methods to approach this interface between evolutionary theory and physical oceanography.
Industrial fishing has been identified as a cause for life history changes in many harvested stocks, mainly because of the intense fishing mortality and its size-selectivity. Because these changes are potentially evolutionary, we investigate evolutionarily stable life-histories and yield in an energy-allocation state-dependent model for Northeast Arctic cod Gadus morhua. We focus on the evolutionary effects of size-selective fishing because regulation of gear selectivity may be an efficient management tool. Trawling, which harvests fish above a certain size, leads to early maturation except when fishing is low and confined to mature fish. Gillnets, where small and large fish escape, lead to late maturation for low to moderate harvest rates, but when harvest rates increase maturation age suddenly drops. This is because bell-shaped selectivity has two size-refuges, for fish that are below and above the harvestable size-classes. Depending on the harvest rate it either pays to grow through the harvestable slot and mature above it, or mature small below it. Sustainable yield on the evolutionary time-scale is highest when fishing is done by trawling, but only for a small parameter region. Fishing with gillnets is better able to withstand life-history evolution, and maintains yield over a wider range of fishing intensities.
Timing of reproduction in a seasonal cycle is a life history trait with important fitness consequences. Capital breeders produce offspring from stored resources and, by decoupling feeding and reproduction, may bend the constraints caused by seasonality in food or predation. Income breeders, on the other hand, produce offspring from concurrent food intake, with the disadvantage of less flexibility, but with high efficiency and no inventory costs of carrying stores. Here, we assess relative profitability of capital and income breeding in herbivorous zooplankton inhabiting seasonal, high-latitude environments. We apply a state-dependent life history model where reproductive values are used to optimise energy allocation and diapause strategies over the year. Three environmental scenarios were modelled: an early, an intermediate, and a late feeding season. We found that capital breeding was most important in the early season. Capital breeding ranged from 7Á9% of the eggs produced but, because of the high reproductive value of early eggs, capital breeding ranged from 9Á30% when measured in terms of reproductive value. The main benefit of capital breeding was reproduction prior to the feeding season Á when the reproductive value of an egg peaked. In addition, capital breeding was also used to increase egg production rates at times of income breeding. For individuals born late in the season the model predicted a two-year cycle instead of the typical annual life cycle. These individuals could then reap the benefits of early reproduction and capital breeding in their second year instead of income breeding late in the first year. We emphasize the importance of evaluating reproductive strategies such as capital and income breeding from a complete life cycle perspective. In particular, knowing the seasonality in offspring fitness is essential to appreciate evolutionary and population-level consequences of capital breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.