Walther et al. systematically fluorescently tag endogenous Condensin subunits and map their abundance, physical spacing, and mitotic dynamics by fluorescence correlation spectroscopy–calibrated live-cell imaging and superresolution microscopy. They propose a three-step hierarchical loop model of mitotic chromosome compaction.
Chromatin post-translational modifications are thought to be important for epigenetic effects on gene expression. Methylation of histone N-terminal tail lysine residues constitutes one of many such modifications, executed by families of histone lysine methyltransferase (HKMTase). One such protein is ASHH2 from the flowering plant Arabidopsis thaliana, equipped with the interaction domain, CW, and the HKMTase domain, SET. The CW domain of ASHH2 is a selective binder of monomethylation at lysine 4 on histone H3 (H3K4me1) and likely helps the enzyme dock correctly onto chromatin sites. The study of CW and related interaction domains has so far been emphasizing lock-key models, missing important aspects of histone-tail CW interactions. We here present an analysis of the ASHH2 CW-H3K4me1 complex using NMR and molecular dynamics, as well as mutation and affinity studies of flexible coils. b-augmentation and rearrangement of coils coincide with changes in the flexibility of the complex, in particular the g1, g3 and C-terminal coils, but also in the b1 and b2 strands and the C-terminal part of the ligand. Furthermore, we show that mutating residues with outlier dynamic behaviour affect the complex binding affinity despite these not being in direct contact with the ligand. Overall, the binding process is consistent with conformational selection. We propose that this binding mechanism presents an advantage when searching for the correct post-translational modification state among the highly modified and flexible histone tails, and also that the binding shifts the catalytic SET domain towards the nucleosome.
The spatial organization of the genome is essential for its functions, including gene expression, DNA replication and repair, as well as chromosome segregation. Biomolecular condensates and loop extrusion have been proposed as the principal driving forces that underlie the formation of non-random structures such as chromatin compartments and topologically associating domains. However, if the actual 3D-folding of DNA in single cells is consistent with these mechanisms has been difficult to address in situ. Here, we present LoopTrace, a FISH workflow for high-resolution reconstruction of 3D genome architecture without DNA denaturation. Classical fluorescence in situ hybridization approaches can link chromatin architecture to DNA sequence but disrupt chromatin structure at the critical nanoscale of individual loops. Our method conserves chromatin structure and can resolve the 3D-fold of chromosomal DNA with better than 5-kb-resolution in single human cells. Our results show that the chromatin fiber behaves as a random coil that can be further structured in a manner consistent with loop formation, explaining the emergence of topologically associated domain-like features in cell population averages. Mining a large amount of single-cell data computationally, we reveal chromatin folding intermediates consistent with progressive loop extrusion and stabilized loops, highlighting the power of our method to visualize the nanoscale features of genome organization in situ.
The 3D structure of chromatin plays a key role in genome function, including gene expression, DNA replication, chromosome segregation, and DNA repair. Furthermore the location of genomic loci within the nucleus, especially relative to each other and nuclear structures such as the nuclear envelope and nuclear bodies strongly correlates with aspects of function such as gene expression. Therefore, determining the 3D position of the 6 billion DNA base pairs in each of the 23 chromosomes inside the nucleus of a human cell is a central challenge of biology. Recent advances of super-resolution microscopy in principle enable the mapping of specific molecular features with nanometer precision inside cells. Combined with highly specific, sensitive and multiplexed fluorescence labeling of DNA sequences this opens up the possibility of mapping the 3D path of the genome sequence in situ. Here we develop computational methodologies to reconstruct the sequence configuration of all human chromosomes in the nucleus from a super-resolution image of a set of fluorescent in situ probes hybridized to the genome in a cell. To test our approach, we develop a method for the simulation of DNA in an idealized human nucleus. Our reconstruction method, ChromoTrace, uses suffix trees to assign a known linear ordering of in situ probes on the genome to an unknown set of 3D in-situ probe positions in the nucleus from super-resolved images using the known genomic probe spacing as a set of physical distance constraints between probes. We find that ChromoTrace can assign the 3D positions of the majority of loci with high accuracy and reasonable sensitivity to specific genome sequences. By simulating appropriate spatial resolution, label multiplexing and noise scenarios we assess our algorithms performance. Our study shows that it is feasible to achieve genome-wide reconstruction of the 3D DNA path based on super-resolution microscopy images.
The ASHH2 CW domain is responsible for recognizing the methylation state at lysine 4 of histone 3 N-terminal tails and implicated in the recruitment of the ASHH2 methyltransferase enzyme correctly to the histones. The ASHH2 CW domain binds H3 lysine motifs that can be either mono-, di-, or tri-methylated [ARTK(meX)QTAR, where X denotes the number of methylations], but binds strongest to monomethylated instances (K values reported in the range of 1 µm to 500 nM). Hoppmann et al. published the uncomplexed NMR structure of an ASHH2 CW domain in 2011. Here we document the assignment of a shortened ASHH2 CW construct, CW42, with similar binding affinity and better expression yields than the one used to solve the uncomplexed structure. We also perform H-N HSQC-monitored titrations that document at which protein-peptide ratios the complex is saturated. Backbone resonance assignments are presented for this shortened ASHH2 CW domain alone and bound to an H3 histone tail mimicking peptide monomethylated on lysine 4 (ARTK(me1)QTAR). Likewise, the assignment was also performed for the protein in complex with the dimethylated (ARTK(me2)QTAR) and trimethylated (ARTK(me3)QTAR) peptide. Overall, these two latter situations displayed a similar perturbation of shifts as the mono-methylated instance. In the case of the monomethylated histone tail mimic, side-chain assignment of CW42 in this complex was performed and reported in addition to backbone assignment, in preparation of a future solution structure determination and dynamics characterization of the CW42-ARTK(me1)QTAR complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.