This paper presents an algorithm for feature point extraction from scanning data of large tubular T-joints (a subtype of a TKY joint). Extracting such feature points is a vital step for robot path generation in robotic welding. Therefore, fast and reliable feature point extraction is necessary for developing adaptive robotic welding solutions. The algorithm is based on a Convolutional Neural Network (CNN) for detecting feature points in a scanned weld groove, where the scans are done using a laser profile scanner. To facilitate fast and efficient training, we propose a methodology for generating synthetic training data in the computer graphics software Blender using realistic physical properties of objects. Further, an iterative feature point correction procedure is implemented to improve initial feature point results. The algorithm's performance was validated using a real-world dataset acquired from a large tubular T-joint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.