We study the optimal pricing strategies of a monopolist selling a divisible good (service) to consumers that are embedded in a social network. A key feature of our model is that consumers experience a (positive) local network effect. In particular, each consumer's usage level depends directly on the usage of her neighbors in the social network structure. Thus, the monopolist's optimal pricing strategy may involve offering discounts to certain agents, who have a central position in the underlying network. Our results can be summarized as follows. First, we consider a setting where the monopolist can offer individualized prices and derive an explicit characterization of the optimal price for each consumer as a function of her network position. In particular, we show that it is optimal for the monopolist to charge each agent a price that is proportional to her Bonacich centrality in the social network. In the second part of the paper, we discuss the optimal strategy of a monopolist that can only choose a single uniform price for the good and derive an algorithm polynomial in the number of agents to compute such a price. Thirdly, we assume that the monopolist can offer the good in two prices, full and discounted, and study the problem of determining which set of consumers should be given the discount. We show that the problem is NP-hard, however we provide an explicit characterization of the set of agents that should be offered the discounted price. Next, we describe an approximation algorithm for finding the optimal set of agents. We show that if the profit is nonnegative under any feasible price allocation, the algorithm guarantees at least 88 % of the optimal profit. Finally, we highlight the value of network information by comparing the profits of a monopolist that does not take into account the network effects when choosing her pricing policy to those of a monopolist that uses this information optimally.
In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, harmonic and nonstrategic components. We analyze natural classes of games that are induced by this decomposition, and in particular, focus on games with no harmonic component and games with no potential component. We show that the first class corresponds to the well-known potential games. We refer to the second class of games as harmonic games, and study the structural and equilibrium properties of this new class of games.Intuitively, the potential component of a game captures interactions that can equivalently be represented as a common interest game, while the harmonic part represents the conflicts between the interests of the players. We make this intuition precise, by studying the properties of these two classes, and show that indeed they have quite distinct and remarkable characteristics. For instance, while finite potential games always have pure Nash equilibria, harmonic games generically never do. Moreover, we show that the nonstrategic component does not affect the equilibria of a game, but plays a fundamental role in their efficiency properties, thus decoupling the location of equilibria and their payoff-related properties. Exploiting the properties of the decomposition framework, we obtain explicit expressions for the projections of games onto the subspaces of potential and harmonic games. This enables an extension of the properties of potential and harmonic games to "nearby" games. We exemplify this point by showing that the set of approximate equilibria of an arbitrary game can be characterized through the equilibria of its projection onto the set of potential games.
Motivated by the prevalence of ride-sharing platforms, in “Spatial Pricing in Ride-Sharing Networks,” Bimpikis, Candogan, and Saban explore the impact of the demand pattern for rides across a network’s locations on a platform’s optimal pricing and compensation policy, profits, and consumer surplus. They explicitly account for the pricing problem’s spatial dimension and the fact that the drivers endogenously determine whether and where to provide service. Their first contribution is to develop a tractable model to study a platform operating on a network of locations that may differ in both the size of their potential demand and the destination preferences of riders. Second, they provide a characterization of the platform’s optimal policy and identify “balancedness” of the demand pattern as a property that captures the profit potential of a given network. Finally, they discuss the benefits and limitations of a number of alternative pricing and compensation schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.