Causal terminology is often introduced in the interpretation of encoding and decoding models trained on neuroimaging data. In this article, we investigate which causal statements are warranted and which ones are not supported by empirical evidence. We argue that the distinction between encoding and decoding models is not sufficient for this purpose: relevant features in encoding and decoding models carry a different meaning in stimulus-and in response-based experimental paradigms. We show that only encoding models in the stimulus-based setting support unambiguous causal interpretations. By combining encoding and decoding models trained on the same data, however, we obtain insights into causal relations beyond those that are implied by each individual model type. We illustrate the empirical relevance of our theoretical findings on EEG data recorded during a visuo-motor learning task.
Discovering and exploiting shared, invariant neural activity in electroencephalogram (EEG) based classification tasks is of significant interest for generalizability of decoding models across subjects or EEG recording sessions. While deep neural networks are recently emerging as generic EEG feature extractors, this transfer learning aspect usually relies on the prior assumption that deep networks naturally behave as subject-(or session-) invariant EEG feature extractors. We propose a further step towards invariance of EEG deep learning frameworks in a systemic way during model training. We introduce an adversarial inference approach to learn representations that are invariant to inter-subject variabilities within a discriminative setting. We perform experimental studies using a publicly available motor imagery EEG dataset, and state-ofthe-art convolutional neural network based EEG decoding models within the proposed adversarial learning framework. We present our results in cross-subject model transfer scenarios, demonstrate neurophysiological interpretations of the learned networks, and discuss potential insights offered by adversarial inference to the growing field of deep learning for EEG. INDEX TERMS Adversarial learning, brain-computer interface, deep neural networks, electroencephalogram, invariant representation, motor imagery.
Deep learning methods for person identification based on electroencephalographic (EEG) brain activity encounters the problem of exploiting the temporally correlated structures or recording session specific variability within EEG. Furthermore, recent methods have mostly trained and evaluated based on single session EEG data. We address this problem from an invariant representation learning perspective. We propose an adversarial inference approach to extend such deep learning models to learn session-invariant person-discriminative representations that can provide robustness in terms of longitudinal usability. Using adversarial learning within a deep convolutional network, we empirically assess and show improvements with our approach based on longitudinally collected EEG data for person identification from half-second EEG epochs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.