Three levels of competitiveness affect the success of business enterprises in a globally competitive environment: the competitiveness of the company, the competitiveness of the industry in which the company operates and the competitiveness of the country where the business is located. This study analyses the competitiveness of the automotive industry in association with the national competitiveness perspective using a methodology based on Bayesian Causal Networks. First, we structure the competitiveness problem of the automotive industry through a synthesis of expert knowledge in the light of the World Economic Forum's competitiveness indicators. Second, we model the relationships among the variables identified in the problem structuring stage and analyse these relationships using a Bayesian Causal Network. Third, we develop policy suggestions under various scenarios to enhance the national competitive advantages of the automotive industry. We present an analysis of the Turkish automotive industry as a case study. It is possible to generalise the policy suggestions developed for the case of Turkish automotive industry to the automotive industries in other developing countries where country and industry competitiveness levels are similar to those of Turkey.
The Istanbul Metropolitan Municipality (IMM) seeks to determine locations for additional fire stations to build in Istanbul; its objective is to make residences and historic sites reachable by emergency vehicles within five minutes of a fire station's receipt of a service request. In this paper, we discuss our development of a mathematical model to aid IMM in determining these locations by using data retrieved from its fire incident records. We use a geographic information system to implement the model on Istanbul's road network, and solve two location models, set covering and maximal covering, as what-if scenarios. We discuss 10 scenarios, including the situation that existed when we initiated the project and the scenario that IMM implemented. The scenario implemented increases the city's fire station coverage from 58.6 percent to 85.9 percent, based on a five-minute response time, with an implementation plan that spans three years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.