East Anatolia is a region of high topography made up of a 2-km high plateau and Neogene and Quaternary volcanics overlying the subduction-accretion complex formed by the process of collision. The aeromagnetic and gravity data surveyed by the Mineral Research and Exploration (MTA) of Turkey have been used to interpret qualitatively the characteristics of the near-surface geology of the region. The residual aeromagnetic data were low-pass filtered and analyzed to produce the estimates of magnetic bottom using the centroid method and by forward modelling of spectra to evaluate the uncertainties in such estimates. The magnetic bottom estimates can be indicative of temperatures in the crust because magnetic minerals lose their spontaneous magnetization at the Curie temperature of the dominant magnetic minerals in the rocks and, thus, also are called Curie point depths (CPDs). The Curie point depths over the region of Eastern Anatolia vary from 12.9 to 22.6 km. Depths computed from forward modelling of spectra with 200-600 km window sizes suggest that the bottom depths from East Anatolia from the magnetic data may have errors exceeding 5 km; however, most of the obtained depths appear to lie in the above range and indicate that the lower crust is either demagnetized or non-magnetic. In the interpretation of the magnetic map, we also used reduction-to-pole (RTP) and amplitude of total gradient of high-pass filtered anomalies, which reduced dipolar orientation effects of induced aeromagnetic anomalies. However, the features of the RTP and the total gradient of the high-pass filtered aeromagnetic anomalies are not highly correlated to the hot spring water locations. On the other hand, many high-amplitude features seen on the total gradient map can be correlated with the ophiolitic rocks observed on the surface. This interpretation is supported by Bouguer gravity data. In this paper, we recommend that the sources of the widespread thermal activity seen in East Anatolia must be investigated individually by means of detailed mapping and modelling of high resolution geophysical data to assess further the geothermal potential of the region.
In this paper, aeromagnetic and gravity anomalies obtained from the General Directorate of Mineral Research and Exploration were subjected to upward continuation to 3 km from the ground surface to suppress shallow effects and to expose only regional, deep sources. Then, a reduction to pole (RTP) map of aeromagnetic anomalies was produced from the 3 km upward continued data. A sinuous boundary to the south of Turkey is observed in the RTP map that may indicate the suture zone between the Anatolides and African/Arabian Plates in the closure time of the Tethys Ocean. The sinuous boundary can be correlated with the recent palaeo-tectonic maps. The southern part of the sinuous boundary is quite different and less magnetic in comparison with the northern block. In addition, maxspots maps of the aeromagnetic and gravity anomalies were produced to find out and enhance the boundaries of tectonic units. Crustal thickness, recently calculated and mapped for the western Turkey, is also extended to the whole of Turkey, and the crustal thicknesses are correlated with the previous seismological findings and deep seismic sections. The average crustal thickness calculations using the gravity data are about 28 km along the coastal regions and increase up to 42 km through the Iranian border in the east of Turkey. Density and susceptibility values used as parameters for construction of two-dimensional (2D) gravity and magnetic models A. Ates were compiled in a table from different localities of Turkey. 2D models indicate that all of the anomalous masses are located in the upper crust, and this could be well correlated with the earthquakes which occurred at shallow depths.
Thelocationofthe studyarea for thisresearch ofa Middle Bronze Age Necropolisissituatedinthewest of Turkey near Afyonkarahisar. Magnetic surveying was carried out in two adjacent areas (Areas 4 and 5).Four trencheshavebeenexcavated so farandgraveswerelocatedinpositionsinterpretedfrom a magnetic survey carried out in 2005. Initial excavations have shown that cist, pithos and simple graves were placed randomly and it is suggested that Dedemezari Necropolis is similar to the well known necropoleis of Gordion and Sariket. This paper compares the results of some phase-based filters which show improved performance as edge detectors in different ways.The filters are demonstrated on synthetic magnetic data and magnetic field data from Dedemezari Necropolis. Magnetic field derivatives, both vertical and horizontal, are common and useful tools for interpretation of the magnetic anomalies. Interpretation of magnetic field derivatives, separately or together, provide images of shallow bodies from magnetic data. The horizontal derivatives of the total magnetic field were computed in the space domain by means of finite-difference relationships, and the vertical derivative was computed in the frequency domain by using fast Fourier transform filtering.Derivatives of the magnetic anomalies have been used for detection of causative bodies. The analytic signal (AS), the enhanced horizontal derivative (EHD), tilt derivative (TD), theta map, hyperbolic tilt angle (HTA) and total horizontal derivative (THDR) methods were applied not only to synthetic anomalies but also to the measured magnetic anomalies of Areas 4 and 5. However, AS and EHD produced the best results as the other methods created edge effects
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.