Purpose As in vitro and in vivo studies reported antiviral efficacy against RNA viruses, favipiravir, a pyrazinecarboxamide derivative, has become one of the treatment options for COVID-19 in some countries including Turkey. Preclinical studies demonstrated the risk for teratogenicity and embryotoxicity. Hence, the drug is contraindicated during pregnancy. Although limited in numbers, case-based evaluations indicate that favipiravir might not be a major teratogen in human pregnancies. This study aimed to present and analyze the outcomes of favipiravir exposure during pregnancy. Methods In this case series, the outcomes of nine pregnancies that were referred to the Teratology Information Service of Dokuz Eylul University Faculty of Medicine, Department of Medical Pharmacology between 01 April 2020 and 30 November 2021 were retrospectively evaluated. Results One spontaneous abortion, two elective terminations, one preterm live delivery and five term live deliveries were detected. The premature newborn was reported dead on the 5th day of neonatal intensive care unit admission. Physiological jaundice and transient respiratory distress were recorded in two term infants. One term infant was antenatally diagnosed with renal pelviectasis, but the findings resolved postnatally without requiring intervention. Conclusion The data indicate that favipiravir is not likely to be a major teratogen. Yet, it is not possible to draw a definite conclusion due to methodological limitations. Favipiravir exposures during pregnancy should be followed up closely and the outcomes should be reported consistently.
Background Despite therapeutic drug monitoring and pharmacogenetic-guided dose selection are recommended for pediatric patients, safety of voriconazole is mostly monitored by clinical assessment. Having comprehensive knowledge of safety profile and distinguishing incidental events from the reactions that are truly related to voriconazole use are crucial for safer and uninterrupted treatment. Objectives This study aimed to address adverse reactions during the first month of voriconazole use by systematically evaluating retrospective records of all adverse events. Patients/Methods: It is a single-center, retrospective analysis of patients who received voriconazole from 1 September 2010 to 1 September 2020. Severity of abnormal findings in medical records were systematically graded. Causality between voriconazole and the events was evaluated by Liverpool Causality Assessment Tool (LCAT), Naranjo Algorithm and World Health Organization Causality Assessment System. The events with possible or probable causal relation to voriconazole are classified as adverse reaction. Results Records of 45 patients included in the study. The overall frequency of adverse reactions was 51.1%. Hepatobiliary laboratory adverse reactions identified in 48.9% of the patients and led to treatment discontinuation in 20.0%. Amylase and lipase elevation (2.2%), ventricular extra systoles (2.2%), hallucination and nightmares (2.2%) were other adverse reactions. Conclusions Hepatobiliary abnormalities were the most common adverse reactions and the most common cause of treatment discontinuation. For safer treatment in critically ill patients, the dose should be personalized. To clearly identify the accurate frequency and the causality of all adverse reactions, prospective studies with much larger sample size are needed.
The hepatotoxicity of drugs is one of the leading causes of drug withdrawal from the pharmaceutical market and high drug attrition rates. Currently, the commonly used hepatocyte models include conventional hepatic cell lines and animal models, which cannot mimic human drug-induced liver injury (DILI) due to poorly defined dose-response relationships and/or lack of human-specific mechanisms of toxicity. In comparison to 2D culture systems from different cell sources such as primary human hepatocytes and hepatomas,, 3D organoids derived from an inducible pluripotent stem cell (iPSC) or adult stem cells are promising accurate models to mimic organ behavior with a higher level of complexity and functionality owing to their ability to self-renewal. Meanwhile, the heterogeneous cell composition of the organoids enables metabolic and functional zonation of hepatic lobule important in drug detoxification and has the ability to mimic idiosyncratic DILI as well. Organoids having higher drug-metabolizing enzyme capacities can culture long-term and be combined with microfluidic-based technologies such as organ-on-chips for a more precise representation of human susceptibility to drug response in a high-throughput manner. However, there are numerous limitations to be considered about this technology, such as enough maturation, differences between protocols and high cost. Herein, we first reviewed the current preclinical DILI assessment tools and looked at the organoid technology with respect to in vitro detoxification capacities. Then we discussed the clinically applicable DILI assessment markers and the importance of liver zonation in the next generation organoid-based DILI models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.