Thanks to its photocatalytic property, graphitic carbon nitride (g‐C3N4) is a promising candidate in various applications including nanomedicine. However, studies focusing on the suitability of g‐C3N4 for cancer therapy are very limited and possible underlying molecular mechanisms are unknown. Here, it is demonstrated that photoexcitation of g‐C3N4 can be used effectively in photodynamic therapy, without using any other carrier or additional photosensitizer. Upon light exposure, g‐C3N4 treatment kills cancer cells, without the need of any other nanosystem or chemotherapeutic drug. The material is efficiently taken up by tumor cells in vitro. The transcriptome and proteome of g‐C3N4 and light treated cells show activation in pathways related to both oxidative stress, cell death, and apoptosis which strongly suggests that only when combined with light exposure, g‐C3N4 is able to kill cancer cells. Systemic administration of the mesoporous form results in elimination from urinary bladder without any systemic toxicity. Administration of the material significantly decreases tumor volume when combined with local light treatment. This study paves the way for the future use of not only g‐C3N4 but also other 2D nanomaterials in cancer therapy.
Mesenchymal stem cells are being used increasingly in cell-based therapies. Adipose tissue is an important source of mesenchymal stem cells and is also routinely used in research on lipid metabolism and obesity. Their high expansion potential and the ease of isolation make these cells an attractive cell source for regenerative therapies. The objective of this review is to give detailed information about the isolation, expansion, and clinical use of these cells in veterinary medicine.
Toll‐like receptors (TLRs) belonging to pattern recognition receptors are involved in maintaining testicular and epididymal immune homeostasis. The purpose of the current study was to investigate TLR4 expression in rat testis and epididymis throughout postnatal development. Weak staining was detected in peritubular myoid cells and immature Sertoli cells while no staining was observed in gonocytes during prepubertal period. However, TLR4 expression began to appear in spermatocytes in pubertal period and gradually increased in spermatids. An intense staining was observed in steps 5–19 spermatids in post pubertal and mature periods. Similarly, TLR4 expression in the testes steadily increased from pubertal period to mature period. Puberty also caused a significant increase in TLR4 expression in epididymis. TLR4 expression in cauda epididymis was lower as compared to those of other epididymal segments. The majority of epididymal epithelial cells exhibited apical TLR4 expression, whereas basal cells showed intense intracytoplasmic immunoreaction. We detected an intense staining in epididymal smooth muscle cells. The expression levels of TLR4 showed dynamic changes in both spermatogenic cells, and entire testicular and epididymal tissues during postnatal development. These results suggest that TLR4 expression contributes not only to inflammation but also to the development of spermatogenic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.