We propose a three-stage stochastic programming model which determines flight timing, fleeting and routing decisions while considering the randomness of demand and noncruise times. Our model differs from the existing two-stage stochastic models by considering not only flight timing and potential passenger demand, but also expected operational expenses, such as fuel burn and carbon emission costs. We include aircraft cruise speed decisions to compensate for non-cruise time variability so as to satisfy the time requirements of the passenger connections. We handle nonlinear functions of fuel and emission costs associated with cruise speed adjustments by utilizing mixed integer second order cone programming. Because the three-stage stochastic model leads to a large decision tree and can be very time-consuming to solve optimally, we suggest a scenario group-wise decomposition algorithm to obtain lower and upper bounds for the optimal value of the proposed model. The lower and upper bounds are obtained by solving a number of group subproblems, which are similar to proposed multi-stage stochastic model defined over a reduced number of scenarios. We suggest a cutting plane algorithm, along with improvements, to efficiently solve each group subproblem. In the numerical experiments, we provide a significant cost savings over two-stage stochastic programming and deterministic approaches.
We present two novel approaches to alter a flight network for introducing new flights while maximizing airline's profit. A key feature of the first approach is to adjust the aircraft cruise speed to compensate for the block times of the new flights, trading off flying time and fuel burn. In the second approach, we introduce aircraft swapping as an additional mechanism to provide a greater flexibility in reducing the incremental fuel cost and adjusting the capacity. The nonlinear fuelburn function and the binary aircraft swap and assignment decisions complicate the optimization problem significantly. We propose strong mixed-integer conic quadratic formulations to overcome the computational difficulties. The reformulations enable solving instances with 300 flights from a major U.S. airline optimally within reasonable compute times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.